【題目】如圖,在中,通過直尺和圓規(guī)作的平分線交于點,以為圓心,為半徑的弧交于點,連結(jié),若,,則四邊形的面積是________.
【答案】
【解析】
首先根據(jù)基本作圖可知AB=AF,再結(jié)合AO平分∠BAD,利用等腰三角形性質(zhì)可知AO⊥BF,且BO=OF=3,然后通過平行四邊形性質(zhì)可知AF∥BE,根據(jù)平行線性質(zhì)得出∠DAE=∠AEB,從而得出∠BAE=∠AEB,由此得出AB=BE=AF,據(jù)此即可證明四邊形ABEF為菱形,最后利用勾股定理求出AO,從而得出AE,最后據(jù)此進一步計算即可.
由題意可得:AF=AB,
∵AO平分∠BAD,
∴∠FAE=∠BAE,AO⊥BF,BO=FO=BF=3,
∵四邊形ABCD是平行四邊形,
∴AF∥BE,
∴∠DAE=∠AEB,
∴∠BAE=∠AEB,
∴AF=AB=BE,
∴四邊形ABEF是菱形,
在Rt△ABO中,AB=5,BO=3,
∴AO=,
∴AE=2AO=8,
∴四邊形ABEF的面積=,
故答案為:24.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在平面直角坐標(biāo)系中,拋物線y=ax2﹣2ax+4(a<0)交x軸于點A、B,與y軸交于點C,AB=6.
(1)如圖1,求拋物線的解析式;
(2)如圖2,點R為第一象限的拋物線上一點,分別連接RB、RC,設(shè)△RBC的面積為s,點R的橫坐標(biāo)為t,求s與t的函數(shù)關(guān)系式;
(3)在(2)的條件下,如圖3,點D在x軸的負(fù)半軸上,點F在y軸的正半軸上,點E為OB上一點,點P為第一象限內(nèi)一點,連接PD、EF,PD交OC于點G,DG=EF,PD⊥EF,連接PE,∠PEF=2∠PDE,連接PB、PC,過點R作RT⊥OB于點T,交PC于點S,若點P在BT的垂直平分線上,OB﹣TS=,求點R的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,長方形的三個頂點的坐標(biāo)為,,,且軸,點是長方形內(nèi)一點(不含邊界).
(1)求,的取值范圍.
(2)若將點向左移動8個單位,再向上移動2個單位到點,若點恰好與點關(guān)于軸對稱,求,的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)開展以“我最喜歡的職業(yè)”為主題的調(diào)查活動,通過對學(xué)生的隨機抽樣調(diào)查得到一組數(shù)據(jù),如圖是根據(jù)這組數(shù)據(jù)繪制成的不完整統(tǒng)計圖.
(1)把折線統(tǒng)計圖補充完整;
(2)求出扇形統(tǒng)計圖中,公務(wù)員部分對應(yīng)的圓心角的度數(shù);
(3)若從被調(diào)查的學(xué)生中任意抽取一名,求取出的這名學(xué)生最喜歡的職業(yè)是“教師”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在某海域,一般指揮船在C處收到漁船在B處發(fā)出的求救信號,經(jīng)確定,遇險拋錨的漁船所在的B處位于C處的南偏西45°方向上,且BC=60海里;指揮船搜索發(fā)現(xiàn),在C處的南偏西60°方向上有一艘海監(jiān)船A,恰好位于B處的正西方向.于是命令海監(jiān)船A前往搜救,已知海監(jiān)船A的航行速度為30海里/小時,問漁船在B處需要等待多長時間才能得到海監(jiān)船A的救援?(參考數(shù)據(jù):,,結(jié)果精確到0.1小時)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平直角坐標(biāo)系中,規(guī)定:拋物線的相關(guān)直線為.例如:二次函數(shù)的相關(guān)直線為.
(1)直接寫出拋物線的相關(guān)直線,并求出拋物線與其相關(guān)直線的交點坐標(biāo);
(2)如圖,拋物線與它的相關(guān)直線交于、兩點.
①求拋物線的解析式;
②連結(jié),求的面積;
③作,過拋物線上一動點(不與、重合)作直線的平行線交于點,若以點、、、為頂點的四邊形是平行四邊形,直接寫出點的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)y=﹣的圖象與直線y=kx(k<0)相交于點A、B,以AB為底作等腰三角形,使∠ACB=120°,且點C的位置隨著k的不同取值而發(fā)生變化,但點C始終在某一函數(shù)圖象上,則這個圖象所對應(yīng)的函數(shù)解析式為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線:與直線分別交于點.直線與交于點.記線段,圍成的區(qū)域(不含邊界)為.橫,縱坐標(biāo)都是整數(shù)的點叫做整點.
(1)當(dāng)時,區(qū)域內(nèi)的整點個數(shù)為_____;
(2)若區(qū)域內(nèi)沒有整點,則的取值范圍是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】期末考試后,某市第一中學(xué)為了解本校九年級學(xué)生期末考試數(shù)學(xué)學(xué)科成績情況,決定對該年級學(xué)生數(shù)學(xué)學(xué)科期末考試成績進行抽樣分析,已知九年級共有12個班,每班48名學(xué)生,請按要求回答下列問題:
(收集數(shù)據(jù))
(1)若要從全年級學(xué)生中抽取一個48人的樣本,你認(rèn)為以下抽樣方法中比較合理的有 ;(只要填寫序號即可)
①隨機抽取一個班級的48名學(xué)生;②在全年級學(xué)生中隨機抽取48名學(xué)生;③在全年級12個班中分別各抽取4名學(xué)生;④從全年級學(xué)生中隨機抽取48名男生;
(整理數(shù)據(jù))
(2)將抽取的48名學(xué)生的成績進行分組,繪制頻數(shù)分布表和成績分布扇形統(tǒng)計圖(不完整)如下.請根據(jù)圖表中數(shù)據(jù)填空:
①C類和D類部分的圓心角度數(shù)分別為 、
②估計全年級A、B類學(xué)生大約一共有 名;
成績(分) | 頻數(shù) | 頻率 |
A類(80~100) | 0.5 | |
B類(60~79) | 0.25 | |
C類(40~59) | 8 | |
D類(0~39) | 4 |
(3)學(xué)校為了解其他學(xué)校教學(xué)情況,將同層次的第一、第二兩所中學(xué)的抽樣數(shù)據(jù)進行對比,得下表:
學(xué)校 | 平均分(分) | 極差(分) | 方差 | A、B類的頻率和 |
第一中學(xué) | 71 | 52 | 432 | 0.75 |
第二中學(xué) | 71 | 80 | 497 | 0.82 |
你認(rèn)為哪所學(xué)校的教學(xué)效果較好?結(jié)合數(shù)據(jù),請給出一個解釋來支持你的觀點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com