【題目】如圖所示,在某海域,一般指揮船在C處收到漁船在B處發(fā)出的求救信號(hào),經(jīng)確定,遇險(xiǎn)拋錨的漁船所在的B處位于C處的南偏西45°方向上,且BC=60海里;指揮船搜索發(fā)現(xiàn),在C處的南偏西60°方向上有一艘海監(jiān)船A,恰好位于B處的正西方向.于是命令海監(jiān)船A前往搜救,已知海監(jiān)船A的航行速度為30海里/小時(shí),問(wèn)漁船在B處需要等待多長(zhǎng)時(shí)間才能得到海監(jiān)船A的救援?(參考數(shù)據(jù):,結(jié)果精確到0.1小時(shí))

【答案】1.0小時(shí).

【解析】延長(zhǎng)AB交南北軸于點(diǎn)D,則ABCD于點(diǎn)D,通過(guò)解直角三角形BDCADC,求出BD、CDAD的長(zhǎng),繼而求出AB的長(zhǎng),從而可以解決問(wèn)題.

如圖,因?yàn)?/span>AB的正西方,延長(zhǎng)AB交南北軸于點(diǎn)D,則ABCD于點(diǎn)D.

∵∠BCD=45°,BDCD,

BD=CD.

RtBDC中,∵cosBCD=,BC=60海里,

cos45°=,解得CD=海里,

BD=CD=海里.

RtADC中,∵tanACD=

tan60°==,解得AD=海里,

AB=AD-BD,

AB==30()海里.

∵海監(jiān)船A的航行速度為30海里/小時(shí),

則漁船在B處需要等待的時(shí)間為 ==≈2.45-1.41=1.04≈1.0小時(shí),

∴漁船在B處需要等待約1.0小時(shí).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以為圓心,半徑為的圓與軸交于、兩點(diǎn),與軸交于兩點(diǎn),點(diǎn)為⊙上一動(dòng)點(diǎn),,則弦的長(zhǎng)度為__________,當(dāng)點(diǎn)在⊙上運(yùn)動(dòng)的過(guò)程中,線段的長(zhǎng)度的最小值為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠BADCAE=90°,ABADAEAC,點(diǎn)DCE上,AFCB,垂足為F.

(1)AC=10,求四邊形ABCD的面積;

(2)求證:CE=2AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AE是中線,AD是角平分線,AF是高,填空:

1BE      

2)∠BAD      

3)∠AFB   90°

4SABC   SABE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A、D、C、F在同一條直線上,AD=CF,AB=DE,BC=EF.

(1)求證:ΔABC△DEF;

(2)若∠A=55°,B=88°,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料并完成任務(wù):

點(diǎn)在數(shù)軸上分別表示有理數(shù)兩點(diǎn)之間的距離表示為

當(dāng)兩點(diǎn)中有一點(diǎn)在原點(diǎn)時(shí),不妨設(shè)點(diǎn)在原點(diǎn),如圖1所示, ;

當(dāng)兩點(diǎn)都不在原點(diǎn)時(shí),分三種情況,

情況一:如圖2所示,點(diǎn)都在原點(diǎn)的右側(cè),;

情況二:如圖3所示,點(diǎn)都在原點(diǎn)左側(cè),;

情況三:如圖4所示,點(diǎn)在原點(diǎn)的兩邊,;

綜上所述,若點(diǎn)在數(shù)軸上分別表示有理數(shù),則數(shù)軸上兩點(diǎn)之間的距離為

任務(wù)一:數(shù)軸上表示25的兩點(diǎn)之間的距離是________,數(shù)軸上表示-2-5的兩點(diǎn)之間的距離是________,數(shù)軸上表示3-1的兩點(diǎn)之間的距離是________

任務(wù)二:點(diǎn)在數(shù)軸上分別表示有理數(shù),那么的距離與的距離之和可表示為_________(用含絕對(duì)值的式子表示).如果,那么________

任務(wù)三:當(dāng)取最小值時(shí), =________, =________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把矩形紙片ABCD沿對(duì)角線折疊,設(shè)重疊部分為EBD,那么下列說(shuō)法錯(cuò)誤的是(  )

A. EBD是等腰三角形,EB=ED B. 折疊后ABE和C′BD一定相等

C. 折疊后得到的圖形是軸對(duì)稱(chēng)圖形 D. EBA和EDC′一定是全等三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A8,0)動(dòng)點(diǎn)PA出發(fā)以每秒2個(gè)單位長(zhǎng)度的速度沿線段AO向終點(diǎn)O運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)QO出發(fā)以相同速度沿y軸正半軸運(yùn)動(dòng),點(diǎn)P到達(dá)點(diǎn)O,兩點(diǎn)同時(shí)停止運(yùn)動(dòng).

1)當(dāng)t= 時(shí),∠OPQ=45°;

2)如圖2,以PQ為斜邊在第一象限作等腰RtPQM,求M點(diǎn)坐標(biāo);

3)在(2)的條件下,點(diǎn)Rx軸負(fù)半軸上一點(diǎn),且,點(diǎn)M關(guān)于PQ的對(duì)稱(chēng)點(diǎn)為N,求t為何值時(shí),△ONR為等腰直角三角形;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:,

1)請(qǐng)找出圖中一對(duì)全等的三角形,并說(shuō)明理由;

2)若,,求的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案