【題目】在平面直角坐標系中,一次函數(shù)y=ax+b(a≠0)的圖形與反比例函數(shù)y= (k≠0)的圖象交于第二、四象限內的A、B兩點,與y軸交于C點,過點A作AH⊥y軸,垂足為H,OH=3,tan∠AOH= ,點B的坐標為(m,﹣2).
(1)求△AHO的周長;
(2)求該反比例函數(shù)和一次函數(shù)的解析式.

【答案】
(1)解:由OH=3,tan∠AOH= ,得

AH=4.即A(﹣4,3).

由勾股定理,得

AO= =5,

△AHO的周長=AO+AH+OH=3+4+5=12


(2)解:將A點坐標代入y= (k≠0),得

k=﹣4×3=﹣12,

反比例函數(shù)的解析式為y= ;

當y=﹣2時,﹣2= ,解得x=6,即B(6,﹣2).

將A、B點坐標代入y=ax+b,得

,

解得

一次函數(shù)的解析式為y=﹣ x+1


【解析】(1)根據(jù)正切函數(shù),可得AH的長,根據(jù)勾股定理,可得AO的長,根據(jù)三角形的周長,可得答案;(2)根據(jù)待定系數(shù)法,可得函數(shù)解析式.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一輛貨車和一輛小轎車同時從甲地出發(fā),貨車勻速行駛至乙地,小轎車中途停車休整2h后提速行駛至乙地.設行駛時間為x( h),貨車的路程為y1( km),小轎車的路程為y2( km ),圖中的線段OA與折線OBCD分別表示y1,y2x之間的函數(shù)關系.

(1)甲乙兩地相距_____km,m=_____

(2)求線段CD所在直線的函數(shù)表達式;

(3)小轎車停車休整后還要提速行駛多少小時,與貨車之間相距20km?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點坐標為Q(2,﹣1),且與y軸交于點C(0,3),與x軸交于A,B兩點(點A在點B的右側),點P是該拋物線上的一動點,從點C沿拋物線向點A運動(點P與A不重合),過點P作PD∥y軸,交AC于點D.

(1)求該拋物線的函數(shù)關系式;
(2)當△ADP是直角三角形時,求點P的坐標;
(3)在題(2)的結論下,若點E在x軸上,點F在拋物線上,問是否存在以A、P、E、F為頂點的平行四邊形?若存在,求點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:線段AB=20cm.

(1)如圖1,點P沿線段ABA點向B點以2厘米/秒運動,點P出發(fā)2秒后,Q沿線段BAB點向A點以3厘米/秒運動,問再經過幾秒后P、Q相距5cm?

(2)如圖2:AO=4厘米,PO=2厘米POB=60°,點P繞著點O60°/秒的速度時針旋轉一周停止,同時點Q沿直線BAB點向A點運動,假若點P、Q兩點能相遇,求點Q運動的速度

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD的對角線ACBD相交于點O,EAC上一點,過點AAGEB,垂足為GAGBDF,則OE=OF

1請證明0E=OF

2)解答(1)題后,某同學產生了如下猜測:對上述命題,若點EAC的延長線上,AGEBAG EB的延長線于 G,AG的延長線交DB的延長線于點F,其他條件不變,則仍有OE=OF.問:猜測所得結論是否成立?若成立,請給出證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們給出如下定義:順次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形.

(1如圖1,四邊形ABCD中,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點.求證:中點四邊形EFGH是平行四邊形;

(2如圖2,點P是四邊形ABCD內一點,且滿足PA=PB,PC=PD,∠APB=∠CPD,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點,猜想中點四邊形EFGH的形狀,并證明你的猜想;

(3若改變(2中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點四邊形EFGH的形狀.(不必證明

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ABAC,ADABC的角平分線,DEAB,DFAC,垂足分別為E,F,則下列四個結論:①AD上任意一點到點C,B的距離相等;②AD上任意一點到AB,AC的距離相等;③BDCDADBC;④∠BDECDF.其中正確的個數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB,CD相交于點O,OE平分∠AOC,∠AOD比∠AOE大75°,求∠AOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料: 如圖1,在平面直角坐標系xOy中,直線y1=ax+b與雙曲線y2= 交于A(1,3)和B(﹣3,﹣1)兩點.

觀察圖象可知:
①當x=﹣3或1時,y1=y2;
②當﹣3<x<0或x>1時,y1>y2 , 即通過觀察函數(shù)的圖象,可以得到不等式ax+b> 的解集.
有這樣一個問題:求不等式x3+4x2﹣x﹣4>0的解集.
某同學根據(jù)學習以上知識的經驗,對求不等式x3+4x2﹣x﹣4>0的解集進行了探究.
下面是他的探究過程,請將(1)、(2)、(3)補充完整:
將不等式按條件進行轉化:
當x=0時,原不等式不成立;
當x>0時,原不等式可以轉化為x2+4x﹣1> ;
當x<0時,原不等式可以轉化為x2+4x﹣1< ;
(1)構造函數(shù),畫出圖象 設y3=x2+4x﹣1,y4= ,在同一坐標系中分別畫出這兩個函數(shù)的圖象.
雙曲線y4= 如圖2所示,請在此坐標系中畫出拋物線y3=x2+4x﹣1;(不用列表)

(2)確定兩個函數(shù)圖象公共點的橫坐標 觀察所畫兩個函數(shù)的圖象,猜想并通過代入函數(shù)解析式驗證可知:滿足y3=y4的所有x的值為
(3)借助圖象,寫出解集 結合討論結果,觀察兩個函數(shù)的圖象可知:不等式x3+4x2﹣x﹣4>0的解集為

查看答案和解析>>

同步練習冊答案