【題目】如圖,在平面直角坐標系中,A(﹣1,5)、B(﹣10)、C(﹣43

1)將△ABC向右平移6個單位至△A1B1C1,再將△A1B1C1繞點E51)逆時針旋轉(zhuǎn)90°至△A2B2C2,請按要求畫出圖形;

2)在(1)的變換過程中,直接寫出點C的運動路徑長   

3)△A2B2C2可看成△ABC繞某點P旋轉(zhuǎn)90°得到的,則點P的坐標為   

【答案】(1)詳見解析;(2)6+π;(3)(2,4).

【解析】

1)利用點平移的坐標規(guī)律寫出的坐標,然后描點得到△A1B1C1,再利用網(wǎng)格特點和旋轉(zhuǎn)的性質(zhì)畫出得到△A2B2C2

2)點C的運動路徑長為平移的距離和弧的長;

3)作的垂直平分線,它們的交點為P點.

解:(1)如圖,△A1B1C1△A2B2C2為所作;

2)點C的運動路徑長=6+6+π;

3)作的垂直平分線,它們的交點為P點,則點P的坐標為(2,4).

故答案為6+π;(24).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,△ABC中,DAB的中點,DCAC,且∠BCD30°,求∠CDA的正弦值、余弦值、正切值和余切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC與△ABD不全等,且AC=AD=1,∠ABD=∠ABC=45°,∠ACB=60°,則CD=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖、在平行四邊形ABCD中,E、F是對角線BD上的兩點,則下列條件中不能判定四邊形AECF是平行四邊形的是( )

A.BD=DFB.AFBD,

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知拋物線y=ax2+bx+2a≠0)與x軸交于A-1,0),B3,0)兩點,與y軸交于點C,連接BC

1)求該拋物線的解析式,并寫出它的對稱軸;

2)點D為拋物線對稱軸上一點,連接CD、BD,若∠DCB=CBD,求點D的坐標;

3)已知F1,1),若Ex,y)是拋物線上一個動點(其中1x2),連接CE、CFEF,求CEF面積的最大值及此時點E的坐標.

4)若點N為拋物線對稱軸上一點,拋物線上是否存在點M,使得以B,C,M,N為頂點的四邊形是平行四邊形?若存在,請直接寫出所有滿足條件的點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于點A-1,0),點B-3,0),且OB=OC

1)求拋物線的解析式;

2)點P在拋物線上,且∠POB=ACB,求點P的坐標;

3)拋物線上兩點M,N,點M的橫坐標為m,點N的橫坐標為m+4.D是拋物線上MN之間的動點,過點Dy軸的平行線交MN于點E.

①求DE的最大值.

②點D關(guān)于點E的對稱點為F.m為何值時,四邊形MDNF為矩形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線軸的負半軸于點.軸正半軸上一點,點關(guān)于點的對稱點恰好落在拋物線上.過點軸的平行線交拋物線于另一點.若點的橫坐標為,則的長為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】6分)如圖所示,將直尺擺放在三角板ABC上,使直尺與三角板的邊分別交于點D,E,F,G,量得∠CGD=42°。

1)求∠CEF的度數(shù);

2)將直尺向下平移,使直尺的邊緣通過三角板的頂點B,交AC邊于點H,如圖所示.點H,B在直尺上的讀數(shù)分別為4,134,求BC的長(結(jié)果保留兩位小數(shù)).

(參考數(shù)據(jù):sin42°≈067,cos42°≈074,tan42°≈090

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在兩建筑物之間有一高為15米的旗桿,從高建筑物的頂端A點經(jīng)過旗桿頂點恰好看到矮建筑物的底端墻角C點,且俯角a60°,又從A點測得矮建筑物左上角頂端D點的俯角β30°,若旗桿底部點GBC的中點(點B為點A向地面所作垂線的垂足)則矮建筑物的高CD_____

查看答案和解析>>

同步練習(xí)冊答案