【題目】已知直線:y1x軸、y軸相交于AB兩點,與雙曲線(k0,x0)相交于第四象限的點C,過點C作直線lx軸,垂足為D,若△ABD的面積為,且BAC的中點.

(1)k的值;

(2)直接寫出的解集;

(3)P為直線l的一動點,點P的縱坐標(biāo)為m,∠APB≥30°,求m的范圍.

【答案】(1)k=-2;(2)x>1(3)-2≤m≤2

【解析】

1)根據(jù)△ABD的面積為可求得OD,再根據(jù)一次函數(shù)可求得C點坐標(biāo),由此可求得k的值;

2)將不等式進行適當(dāng)變形,結(jié)合圖象即可得解;

3)以點D為圓心,AD長為半徑畫圓,根據(jù)圓周角定理可得∠AMB=ANB=30,由此求得m的取值范圍.

解:(1)x=0y=0分別代入y1,得A(-10),B(0, )

∵△ABD的面積為,

,即,

AD=2,

OD=1

x=1代入y1,得C(1-2),

k= -2

(2)當(dāng),即

由圖象可知:x>1;

(3)OA=1,OB=

AB=2,tanBAO=,

∴∠BAO=60AD=AB=2,

∴△ABD是等邊三角形,

如圖,以點D為圓心,AD長為半徑畫圓,與直線l交于M、N兩點,

則∠AMB=ANB=30

當(dāng)點P在線段MN上時(不同于MN),連接AP交圓于Q

則∠APB>AQB,即∠APB>30°,

當(dāng)點P在線段MN外側(cè)時,∠APB<30°,所以-2≤m≤2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】校園安全越來越受到人們的關(guān)注,我市某中學(xué)對部分學(xué)生就校園安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.根據(jù)圖中信息回答下列問題:

1)接受問卷調(diào)查的學(xué)生共有______人,條形統(tǒng)計圖中m的值為______;

2)扇形統(tǒng)計圖中了解很少部分所對應(yīng)扇形的圓心角的度數(shù)為______;

3)若該中學(xué)共有學(xué)生1800人,根據(jù)上述調(diào)查結(jié)果,可以估計出該學(xué)校學(xué)生中對校園安全知識達到非常了解基本了解程度的總?cè)藬?shù)為______人;

4)若從對校園安全知識達到非常了解程度的2名男生和2名女生中隨機抽取2人參加校園安全知識競賽,請用列表或畫樹狀圖的方法,求恰好抽到1名男生和1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為推廣勞動教育,美化校園環(huán)境,學(xué)校決定在農(nóng)場基地鋪設(shè)一條觀景小道.經(jīng)設(shè)計,鋪設(shè)這條小道需A,B兩種型號石磚共200塊.已知:購買3A型石磚,2B型石磚需要110元;購買5A型石磚,4B型石磚需要200元.

1)求A,B兩種型號石磚單價各為多少元?

2)已知B型石磚正在進行促銷活動:購買B型石磚數(shù)量在60塊以內(nèi)(包括60塊)時,不優(yōu)惠;購買B型石磚數(shù)量超過60塊時,每超過1塊,購買的所有B型石磚單價均降0.05元,問:學(xué)校采購石磚,最多需要多少預(yù)算經(jīng)費?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)k1、b為常數(shù),k1≠0)的圖象與反比例函數(shù)的圖象交于點Am,8)與點B4,2).

①求一次函數(shù)與反比例函數(shù)的解析式.

②根據(jù)圖象說明,當(dāng)x為何值時,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解家長和學(xué)生參與全國中小學(xué)生新冠肺炎疫情防控專題教育的情況,在本校學(xué)生中隨機抽取部分學(xué)生作調(diào)查,把收集的數(shù)據(jù)分為以下4類情形:A.僅學(xué)生自己參與;B.家長和學(xué)生一起參與;C.僅家長參與;D.家長和學(xué)生都未參與.請根據(jù)圖中提供的信息,解答下列問題:

(1)在這次抽樣調(diào)查中,共調(diào)查了______名學(xué)生;

(2)C類所對應(yīng)扇形的圓心角的度數(shù)是_______,并補全條形統(tǒng)計圖;

(3)根據(jù)抽樣調(diào)查結(jié)果,試估計該校1800名學(xué)生中家長和學(xué)生都未參與的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,已知點A8,0)和點B0,6),點CAB的中點,點P在折線AOB上,直線CP截△AOB,所得的三角形與△AOB相似,那么點P的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:

如圖,在正多邊形的邊上任取一不與點重合的點,并以線段為邊在線段的上方作以正多邊形,把正多邊形叫正多邊形的準(zhǔn)位似圖形,點稱為準(zhǔn)位似中心.

特例論證:

如圖已知正三角形的準(zhǔn)位似圖形為正三角形,試證明:隨著點的運動,的大小始終不變.

數(shù)學(xué)思考:

如圖已知正方形的準(zhǔn)位似圖形為正方形,隨著點的運動,的大小始終不變?若不變,請求出的大;若改變,請說明理由.

歸納猜想:

在圖的情況下:

試猜想的大小是否會發(fā)生改變?若不改變,請用含n的代數(shù)式表示出的大小直接寫出結(jié)果;若改變,請說明理由.

______用含n的代數(shù)式表示

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)接到一批防護服生產(chǎn)任務(wù),按要求15天完成,已知這批防護服的出廠價為每件80元,為按時完成任務(wù),該企業(yè)動員放假回家的工人及時返回加班趕制.該企業(yè)第天生產(chǎn)的防護服數(shù)量為件,之間的關(guān)系可以用圖中的函數(shù)圖象來刻畫.

1)直接寫出的函數(shù)關(guān)系式________;

2)由于疫情加重,原材料緊缺,防護服的成本前5天為每件50元,從第6天起每件防護服的成本比前一天增加2元,設(shè)第天創(chuàng)造的利潤為元,直接利用(1)的結(jié)論,求之間的函數(shù)表達式,并求出第幾天的利潤最大,最大利潤是多少元?(利潤=出廠價-成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角ABC中,∠C90°,ACBC2PAC的中點,QAB上的一個動點,連接PQ,CQ,則PQ+CQ的最小值為(  )

A.2B.3C.D.

查看答案和解析>>

同步練習(xí)冊答案