【題目】已知在圖(1)與圖(2)中,每個小方格都是邊長為1個單位的正方形,的三個頂點都在格點上.

1)將關(guān)于點對稱,在圖(1)中畫出對稱后的圖形,并涂黑;

2)將△OAB先向右平移3個單位,再向上平移2個單位,在圖2中畫出平移后的圖形,并涂黑。

【答案】1)見解析;(2)見解析.

【解析】

1)根據(jù)OAB關(guān)于點P1,0)對稱的特點分別求出對應點的坐標,順次連接即可;
2)根據(jù)先向右平移3個單位,再向上平移2個單位的規(guī)律求出對應點的坐標,順次連接即可.

1)根據(jù)OAB關(guān)于點P10)對稱的特點分別求出對應點的坐標,順次連接,如圖所示:

2)根據(jù)先向右平移3個單位,再向上平移2個單位的規(guī)律求出對應點的坐標,順次連接,如圖所示:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一個用來盛爆米花的圓錐形紙杯,紙杯開口的直徑 EF 長為10cm,母線OE(OF)長為10cm,在母線OF 上的點A 處有一塊爆米花殘渣且FA2cm,一只螞蟻從杯口的點E 處沿圓錐表面爬行到A ,則此螞蟻爬行的最短距離為 cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場試銷一種成本價為每件60元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,獲利不得高于40%.經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價x(元)符合一次函數(shù)y=kx+b,且x=80時,y=40;x=70時,y=50.

(1)求一次函數(shù)y=kx+b的表達式;

(2)若該商場獲得利潤為W元,試寫出利潤W與銷售單價x之間的關(guān)系式;銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在邊長為1的正方形網(wǎng)格圖中,點B的坐標為(2,0),點A的坐標為(0,-3)

1)在圖1中,請建立合適的坐標系,把線段AB繞原點旋轉(zhuǎn)180°得線段DE(其中AD是對應點),則四邊形ABDE 形,面積等于

2)在圖2中,僅使用無刻度的直尺,作出以AB為邊的矩形ABFG,使其面積為11(保留作圖痕跡,不寫做法)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸交于A、B兩點,與y軸交于點C,已知A﹣1,0),C0,3

1)求該拋物線的表達式;

2)求BC的解析式;

3)點M是對稱軸右側(cè)點B左側(cè)的拋物線上一個動點,當點M運動到什么位置時,BCM的面積最大?求BCM面積的最大值及此時點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】王老師對試卷講評課中九年級學生參與的深度與廣度進行評價調(diào)查,每位學生最終評價結(jié)果為主動質(zhì)疑、獨立思考、專注聽講、講解題目四項中的一項.評價組隨機抽取了若干名初中學生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計圖(均不完整),請根據(jù)圖中所給信息解答下列問題:

(1)在這次評價中,一共抽查了名學生;

(2)在扇形統(tǒng)計圖中,項目“主動質(zhì)疑”所在扇形的圓心角度數(shù)為度;

(3)請將頻數(shù)分布直方圖補充完整;

(4)如果全市九年級學生有8000名,那么在試卷評講課中,“獨立思考”的九年級學生約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠AOB=10°,點POB上.以點P為圓心,OP為半徑畫弧,交OA于點P1(點P1與點O不重合),連接PP1;再以點P1為圓心,OP為半徑畫弧,交OB于點P2(點P2與點P不重合),連接P1 P2;再以點P2為圓心,OP為半徑畫弧,交OA于點P3(點P3與點P1不重合),連接P2 P3;……

請按照上面的要求繼續(xù)操作并探究:

P3 P2 P4=_____°;按照上面的要求一直畫下去,得到點Pn,若之后就不能再畫出符合要求點Pn+1了,則n=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題滿分10分)沿海開發(fā)公司準備投資開發(fā)AB兩種新產(chǎn)品,通過市場調(diào)研發(fā)現(xiàn):

1)若單獨投資A種產(chǎn)品,則所獲利潤yA(萬元)與投資金額x(萬元)之間滿足正比例函數(shù)關(guān)系:yA=kx;

2)若單獨投資B種產(chǎn)品,則所獲利潤yB(萬元)與投資金額x(萬元)之間滿足二次函數(shù)關(guān)系:yB=ax2+bx

3)根據(jù)公司信息部的報告,yA,yB(萬元)與投資金額x(萬元)的部分對應值如下表所示:

1)填空:yA= ;yB= ;

2)若公司準備投資20萬元同時開發(fā)A、B兩種新產(chǎn)品,設公司所獲得的總利潤為W(萬元),試寫出W與某種產(chǎn)品的投資金額x(萬元)之間的函數(shù)關(guān)系式;

3)請你設計一個在(2)中能獲得最大利潤的投資方案,并求出按此方案能獲得的最大利潤是多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某電器超市銷售每臺進價分別為200元、170元的A、B兩種型號的電風扇,下表是近兩周的銷售情況:

(進價、售價均保持不變,利潤 = 銷售收入-進貨成本)

1)求A、B兩種型號的電風扇的銷售單價;

2)若超市準備用不多于5400元的金額再采購這兩種型號的電風扇共30臺,求A種型號的電風扇最多能采購多少臺?

3)在(2)的條件下,超市銷售完這30臺電風扇能否實現(xiàn)利潤為1400元的目標?若能,請給出相應的采購方案;若不能,請說明理由.

查看答案和解析>>

同步練習冊答案