【題目】如圖,∠AOB=10°,點POB上.以點P為圓心,OP為半徑畫弧,交OA于點P1(點P1與點O不重合),連接PP1;再以點P1為圓心,OP為半徑畫弧,交OB于點P2(點P2與點P不重合),連接P1 P2;再以點P2為圓心,OP為半徑畫弧,交OA于點P3(點P3與點P1不重合),連接P2 P3;……

請按照上面的要求繼續(xù)操作并探究:

P3 P2 P4=_____°;按照上面的要求一直畫下去,得到點Pn,若之后就不能再畫出符合要求點Pn+1了,則n=_____

【答案】 40° 8

【解析】分析:根據(jù)等腰三角形的性質和三角形外角的性質依次可得∠P1PB,P2P1A,P3P2B,P4P3A,…,依次得到規(guī)律,再根據(jù)三角形外角小于90°即可求解.

詳解:由題意可知:PO=P1P,P1P=P2P1,…,

則∠POP1=OP1P,P1PP2=P1P2P,…,∵∠BOA=10°,

∴∠P1PB=20°,P2P1A=30°,P3P2B=40°,P4P3A=50°,…,

10°n<90°,

解得n<9.

由于n為整數(shù),故n=8.

故答案為:40°;8.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,ECD邊上一點,FBC延長線上一點,CE=CF.

(1)求證:△BCE≌△DCF;

(2)若∠BEC=60°,求∠EFD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+ca≠0)的圖象的頂點C的坐標為(﹣1﹣3),與x軸交于A﹣30)、B1,0),根據(jù)圖象回答下列問題:

1)寫出方程ax2+bx+c=0的根;

2)寫出不等式ax2+bx+c0的解集;

3)若方程ax2+bx+c=k有實數(shù)根,寫出實數(shù)k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在圖(1)與圖(2)中,每個小方格都是邊長為1個單位的正方形,的三個頂點都在格點上.

1)將關于點對稱,在圖(1)中畫出對稱后的圖形,并涂黑;

2)將△OAB先向右平移3個單位,再向上平移2個單位,在圖2中畫出平移后的圖形,并涂黑。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將的長方形紙片沿過項點的直線為折痕折疊時,點與邊上的點重合,試分別求出的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙、丙、丁四位同學進行一次乒乓球單打比賽,要從中選出兩位同學打笫一場比賽.

(1)請用樹狀圖法或列表法,求恰好選中甲、乙兩位同學的概率;

(2)若已確定甲打第一場,再從其余三位同學中隨機選取一位,求恰好選中乙同學的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD的對角線AC、BD相交于點O,AE平分∠BAD,分別交BC、BD于點E、P,連接OE∠ADC=60°,則下列結論:①∠CAD=30° ③S平行四邊形ABCD=ABAC,正確的個數(shù)是(

A.1 B.2 C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,ABAC,腰AB的垂直平分線DEAB于點E,交AC于點D,且∠DBC15°,則∠A的度數(shù)是

A.50°B.36°C.40°D.45°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,ABAC16cm,BC10cm,點DAB的中點.如果點P在線段BC上以2cm/s的速度由點B向點C運動,同時,點Q在線段CA上由點C向點A運動,當以B、P、D為頂點的三角形與以C、Q、P為頂點的三角形全等時,點Q的速度可能為_____

查看答案和解析>>

同步練習冊答案