如圖,二次函數(shù)y=ax2+bx+c的圖象,如圖所示,則化簡=   
【答案】分析:根據(jù)拋物線開口方向得到a>0,根據(jù)對(duì)稱軸為直線x=->0得到b<0,根據(jù)拋物線與y軸的交點(diǎn)在x軸下方得到c<0,則a-b>0,b+c<0,a-c>0,再根據(jù)二次根式的性質(zhì)得到原式=-|b+c|-|a-c|=|a-b|-|b+c|-|a-c|,然后去絕對(duì)值、合并即可.
解答:解:∵拋物線開口向上,
∴a>0,
∵對(duì)稱軸為直線x=->0,
∴b<0,
∵拋物線與y軸的交點(diǎn)在x軸下方,
∴c<0,
∴a-b>0,b+c<0,a-c>0,
∴原式=-|b+c|-|a-c|
=|a-b|-|b+c|-|a-c|
=a-b+b+c-(a-c)
=a-b+b+c-a+c
=2c.
故答案為2c.
點(diǎn)評(píng):本題考查了二次函數(shù)的圖象與系數(shù)的關(guān)系:二次函數(shù)y=ax2+bx+c(a≠0)的圖象為拋物線,當(dāng)a>0,拋物線開口向上;對(duì)稱軸為直線x=-b2a;拋物線與y軸的交點(diǎn)坐標(biāo)為(0,c);當(dāng)b2-4ac>0,拋物線與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0,拋物線與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0,拋物線與x軸沒有交點(diǎn).也考查了二次根式的性質(zhì)與化簡.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,二次函數(shù)的圖象經(jīng)過點(diǎn)D(0,
7
9
3
),且頂點(diǎn)C的橫坐標(biāo)為4,該圖象在x軸上截得的線段AB的長為6.
(1)求二次函數(shù)的解析式;
(2)在該拋物線的對(duì)稱軸上找一點(diǎn)P,使PA+PD最小,求出點(diǎn)P的坐標(biāo);
(3)在拋物線上是否存在點(diǎn)Q,使△QAB與△ABC相似?如果存在,求出點(diǎn)Q的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,二次函數(shù)圖象的頂點(diǎn)為坐標(biāo)原點(diǎn)O,且經(jīng)過點(diǎn)A(3,3),一次函數(shù)的圖象經(jīng)過點(diǎn)A和點(diǎn)B(6,0).
(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)如果一次函數(shù)圖象與y相交于點(diǎn)C,點(diǎn)D在線段AC上,與y軸平行的直線DE與二次函數(shù)圖象相交于點(diǎn)E,∠CDO=∠OED,求點(diǎn)D的坐標(biāo).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于B、C兩點(diǎn),與y軸交于點(diǎn)A(0,-3),∠ABC=45°,∠ACB=60°,求這個(gè)二次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某公司推出了一種高效環(huán)保型洗滌用品,年初上市后,公司經(jīng)歷了從虧損到盈利的過程,如圖的二次函數(shù)圖象(部分)刻畫了該公司年初以來累積利潤s(萬元)與時(shí)間t(月)之間的關(guān)系(即前t個(gè)月的利潤總和s與t之間的關(guān)系).根據(jù)圖象提供的信息,解答下列問題:
(1)求累積利潤s(萬元)與時(shí)間t(月)之間的函數(shù)關(guān)系式;
(2)求截止到幾月末公司累積利潤可達(dá)30萬元;
(3)從第幾個(gè)月起公司開始盈利?該月公司所獲利潤是多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸相交于兩個(gè)點(diǎn),根據(jù)圖象回答:(1)b
0(填“>”、“<”、“=”);
(2)當(dāng)x滿足
x<-4或x>2
x<-4或x>2
時(shí),ax2+bx+c>0;
(3)當(dāng)x滿足
x<-1
x<-1
時(shí),ax2+bx+c的值隨x增大而減小.

查看答案和解析>>

同步練習(xí)冊(cè)答案