【題目】如圖,在平面直角坐標(biāo)系中,同時(shí)將點(diǎn)A(﹣1,0)、B(3,0)向上平移2個(gè)單位長(zhǎng)度再向右平移1個(gè)單位長(zhǎng)度,分別得到A、B的對(duì)應(yīng)點(diǎn)C、D.連接AC,BD
(1)求點(diǎn)C、D的坐標(biāo),并描出A、B、C、D點(diǎn),求四邊形ABDC面積;
(2)在坐標(biāo)軸上是否存在點(diǎn)P,連接PA、PC使S△PAC=S四邊形ABCD?若存在,求點(diǎn)P坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1)(0,2),(4,2),見解析,ABDC面積:8;(2)存在,P的坐標(biāo)為(7,0)或 (﹣9,0)或(0,18)或 (0,﹣14).
【解析】
(1)根據(jù)向右平移橫坐標(biāo)加,向上平移縱坐標(biāo)加寫出點(diǎn)C、D的坐標(biāo)即可,再根據(jù)平行四邊形的面積公式列式計(jì)算即可得解;
(2)分點(diǎn)P在x軸和y軸上兩種情況,依據(jù)S△PAC=S四邊形ABCD求解可得.
(1)由題意知點(diǎn)C坐標(biāo)為(﹣1+1,0+2),即(0,2),
點(diǎn)D的坐標(biāo)為(3+1,0+2),即(4,2),
如圖所示,
S四邊形ABDC=2×4=8;
(2)當(dāng)P在x軸上時(shí),
∵S△PAC=S四邊形ABCD,
∴,
∵OC=2,
∴AP=8,
∴點(diǎn)P的坐標(biāo)為 (7,0)或(﹣9,0);
當(dāng)P在y軸上時(shí),
∵S△PAC=S四邊形ABCD,
∴,
∵OA=1,
∴CP=16,
∴點(diǎn)P的坐標(biāo)為(0,18)或(0,﹣14);
綜上,點(diǎn)P的坐標(biāo)為(7,0)或 (﹣9,0)或(0,18)或(0,﹣14).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠B=30°,以點(diǎn)A為圓心,任意長(zhǎng)為半徑畫弧分別交AB,AC于點(diǎn)M和N,再分別以M,N為圓心,大于MN的長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)P,連接AP并延長(zhǎng)交BC于點(diǎn)D,則S△DAC:S△ABC=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖△ABC內(nèi)接于圓O,I是△ABC的內(nèi)心,AI的延長(zhǎng)線交圓O于點(diǎn)D.
(1)求證:BD=DI;
(2)若OI⊥AD,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某景點(diǎn)的門票價(jià)格規(guī)定如下表:
我校初二(1),(2)兩個(gè)班共104人準(zhǔn)備利用假期去游覽該景點(diǎn),其中(1)班人數(shù)較少,不到50人,(2)班人數(shù)較多,有50多人,經(jīng)估算,如果兩班都以班為單位分別購(gòu)票,則一共應(yīng)付1240元,問兩班各有多少名學(xué)生? 你認(rèn)為還有沒有好的方法去節(jié)省門票的費(fèi)用?若有,請(qǐng)按照你的方法計(jì)算一下能省多少錢?(
購(gòu)票人數(shù) | 1-50人 | 51-100人 | 100人以上 |
每人門票價(jià) | 13元 | 11元 | 9元 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AN是⊙M的直徑,NB∥x軸,AB交⊙M于點(diǎn)C.
(1)若點(diǎn)A(0,6),N(0,2),∠ABN=30°,求點(diǎn)B的坐標(biāo);
(2)若D為線段NB的中點(diǎn),求證:直線CD是⊙M的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),OD⊥BC于點(diǎn)D,過點(diǎn)C作⊙O的切線,交OD的延長(zhǎng)線于點(diǎn)E,連接BE.
(1)求證:BE與⊙O相切;
(2)設(shè)OE交⊙O于點(diǎn)F,若DF=1,BC=2 ,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在矩形ABCD中,E是CB延長(zhǎng)線上一個(gè)動(dòng)點(diǎn),F、G分別為AE、BC的中點(diǎn),FG與ED相交于點(diǎn)H
(1) 求證:HE=HG
(2) 如圖2,當(dāng)BE=AB時(shí),過點(diǎn)A作AP⊥DE于點(diǎn)P連接BP,求的值
(3) 在(2)的條件下,若AD=2,∠ADE=30°,則BP的長(zhǎng)為______________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的一條弦,E是AB的中點(diǎn),過點(diǎn)E作EC⊥OA于點(diǎn)C,過點(diǎn)B作⊙O的切線交CE的延長(zhǎng)線于點(diǎn)D.
(1)求證:DB=DE;
(2)若AB=12,BD=5,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)-a3·a4;
(2) 2018×2019.
(3)(-2x2y)3·3(xy2)2;
(4)(-3a+2b)2
(5)(x-2)(x+2)(x2+4).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com