【題目】如圖A、B、C在⊙O上,連接OAOB、OC,若∠BOC3AOB,劣弧AC的度數(shù)是120o,OC.則圖中陰影部分的面積是 ( )

A.B.C.D.

【答案】C

【解析】

首先根據(jù)∠BOC3AOB,劣弧AC的度數(shù)是120o得到∠AOB=30°,從而得到∠COB為直角,然后利用S陰影=S扇形OBC-SOEC求解即可.

解:設(shè)OBAC相交于點(diǎn)E,如圖

∵劣弧AC的度數(shù)是120o

∴∠AOC=120°

OA=OC

∴∠OCA=OAC=30°

∵∠BOC3AOB

又∵∠AOC=AOB+BOC

∴∠AOC=AOB+3AOB=120°

∴∠AOB=30°

∴∠BOC=3AOB=90°

RtOCE中,OC=2

OE=OCtanOCE=2tan30°=2×=2

SOEC=×2×2=2

S扇形OBC=

∴用S陰影=S扇形OBC-SOEC=-2

故選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,已知A–1,0),且直線BC的解析式為y=x-2,作垂直于x軸的直線,與拋物線交于點(diǎn)F,與線段BC交于點(diǎn)E(不與點(diǎn)B和點(diǎn)C重合).

1)求拋物線的解析式;

2)若CEF是以CE為腰的等腰三角形,求m的值;

3)點(diǎn)Py軸左側(cè)拋物線上的一點(diǎn),過點(diǎn)P交直線BC于點(diǎn)M,連接PB,若以P、M、B為頂點(diǎn)的三角形與△ABC相似,求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,l是經(jīng)過A20),B0,b)兩點(diǎn)的直線,且b0,點(diǎn)C的坐標(biāo)為(2,0),當(dāng)點(diǎn)B移動(dòng)時(shí),過點(diǎn)CCDl交于點(diǎn)D

1)求點(diǎn)DO之間的距離;

2)當(dāng)tanCDO=時(shí),求直線l的解析式;

3)在(2)的條件下,直接寫出△ACD與△AOB重疊部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)拋物線yax2+bx+cx軸交于兩個(gè)不同的點(diǎn)A(﹣10),Bm,0),與y軸交于點(diǎn)C0,﹣2),且∠ACB90度.

1)求m的值和拋物線的解析式;

2)已知點(diǎn)D1,n)在拋物線上,過點(diǎn)A的直線yx+1交拋物線于另一點(diǎn)E,求點(diǎn)D和點(diǎn)E的坐標(biāo);

3)在x軸上是否存在點(diǎn)P,使以點(diǎn)P,B,D為頂點(diǎn)的三角形與三角形AEB相似?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為倡導(dǎo)節(jié)能環(huán)保,降低能源消耗,提倡環(huán)保型新能源開發(fā),造福社會(huì).某公司研發(fā)生產(chǎn)一種新型智能環(huán)保節(jié)能燈,成本為每件40元.市場(chǎng)調(diào)查發(fā)現(xiàn),該智能環(huán)保節(jié)能燈每件售價(jià)y(元)與每天的銷售量為x(件)的關(guān)系如圖,為推廣新產(chǎn)品,公司要求每天的銷售量不少于1000件,每件利潤不低于5元.

1)求每件銷售單價(jià)y(元)與每天的銷售量為x(件)的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍;

2)設(shè)該公司日銷售利潤為P元,求每天的最大銷售利潤是多少元?

3)在試銷售過程中,受國家政策扶持,毎銷售一件該智能環(huán)保節(jié)能燈國家給予公司補(bǔ)貼mm≤40)元.在獲得國家每件m元補(bǔ)貼后,公司的日銷售利潤隨日銷售量的增大而增大,則m的取值范圍是   (直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校與圖書館在同一條筆直道路上,甲從學(xué)校去圖書館,乙從圖書館回學(xué)校,甲、乙兩人都勻速步行且同時(shí)出發(fā),乙先到達(dá)目的地.兩人之間的距離y()與時(shí)間t(分鐘)之間的函數(shù)關(guān)系如圖所示.乙回到學(xué)校用了______分鐘.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)yx2mxn的圖像與坐標(biāo)軸交于AB、C三點(diǎn),其中A點(diǎn)的坐標(biāo)為、點(diǎn)B的坐標(biāo)是

(1)求該二次函數(shù)的表達(dá)式及點(diǎn)C的坐標(biāo);

(2)若點(diǎn)D的坐標(biāo)是,點(diǎn)F為該二次函數(shù)在第四象限內(nèi)圖像上的動(dòng)點(diǎn),連接CD、CF,以CD、CF為鄰邊作平行四邊形CDEF.設(shè)平行四邊形CDEF的面積為S

①求S的最大值;

②在點(diǎn)F的運(yùn)動(dòng)過程中,當(dāng)點(diǎn)E落在該二次函數(shù)圖像上時(shí),請(qǐng)求出點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某路燈在鉛垂面內(nèi)的示意圖,燈柱BC的高為10米,燈柱BC與燈桿AB的夾角為120°.路燈采用錐形燈罩,在地面上的照射區(qū)域DE的長為13.3米,從DE兩處測(cè)得路燈A的仰角分別為α45°,且tanα6.求燈桿AB的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在每個(gè)小正方形的邊長為的網(wǎng)格圖形中,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn).從一個(gè)格點(diǎn)移動(dòng)到與之相距的另一個(gè)格點(diǎn)的運(yùn)動(dòng)稱為一次跳馬變換.例如,在的正方形網(wǎng)格圖形中(如圖1),從點(diǎn)經(jīng)過一次跳馬變換可以到達(dá)點(diǎn),,,等處現(xiàn)有的正方形網(wǎng)格圖形(如圖2),則從該正方形的頂點(diǎn)經(jīng)過跳馬變換到達(dá)與其相對(duì)的頂點(diǎn),最少需要跳馬變換的次數(shù)是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案