【題目】“臍橙結碩果,香飄引客來”,贛南臍橙以其“外表光潔美觀,肉質脆嫩,風味濃甜芳香”的特點飲譽中外.現(xiàn)欲將一批臍橙運往外地銷售,若用2輛A型車和1輛B型車載滿臍橙一次可運走10噸;用1輛A型車和2輛B型車載滿臍橙一次可運走11噸.現(xiàn)有臍橙31噸,計劃同時租用A型車a輛,B型車b輛,一次運完,且恰好每輛車都載滿臍橙.
根據(jù)以上信息,解答下列問題:
(1)1輛A型車和1輛B型車都載滿臍橙一次可分別運送多少噸?
(2)請你幫該物流公司設計租車方案;
(3)若1輛A型車需租金100元/次,1輛B型車需租金120元/次.請選出費用最少的租車方案,并求出最少租車費.
【答案】(1)1輛A型車裝滿貨物一次可運3噸,1輛B型車裝滿貨物一次可運4噸;
(2)一共有有3種租車方案:方案一:租A型車1輛,B型車7輛; 方案二:租A型車5輛,B型車4輛;方案三:租A型車9輛,B型車1輛;
(3)最省錢的租車方案是方案三,即租A型車1輛,B型車7輛,最少租車費為940元.
【解析】
(1)根據(jù)“用2輛A型車和1輛B型車載滿臍橙一次可運走10噸;用1輛A型車和2輛B型車載滿臍橙一次可運走11噸”列出方程組,解方程組即可得出答案;
(2)結合(1)和“現(xiàn)有臍橙31噸”列出方程,解方程即可得出答案;
(3)根據(jù)(2)的方案分別計算每種方案的運費,取最低運費即可得出答案.
解:(1)設每輛A型車、B型車都裝滿貨物一次可以分別運貨x噸、y噸,
依題意列方程組得:
解得
答:1輛A型車裝滿貨物一次可運3噸,1輛B型車裝滿貨物一次可運4噸。
(2)結合題意和(1)得:3a+4b=31
∵a、b都是正整數(shù)
或或
所以一共有有3種租車方案:
方案一:租A型車1輛,B型車7輛;
方案二:租A型車5輛,B型車4輛; .
方案三:租A型車9輛,B型車1輛. .
(3)因為A型車每輛需租金100元/次,B型車每輛需租金120元/次,
所以方案一需租金:1×100+7×200=940(元);
方案二需租金:5×100+4×120=980(元);
方案三需租金:9×100+1×120=1020(元).
∵1020>980>940
∴最省錢的租車方案是方案三,即租A型車1輛,B型車7輛,最少租車費為940元
科目:初中數(shù)學 來源: 題型:
【題目】某服裝店用4500元購進一批襯衫,很快售完,服裝店老板又用2100元購進第二批該款式的襯衫,進貨量是第一次的一半,但進價每件比第一批降低了10元.
(1)這兩次各購進這種襯衫多少件?
(2)若第一批襯衫的售價是200元/件,老板想讓這兩批襯衫售完后的總利潤不低于2100元,則第二批襯衫每件至少要售多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】雙蓉服裝店老板到廠家購A、B兩種型號的服裝,若購A種型號服裝9件,B種型號服裝10件,需要1810元;若購進A種型號服裝12件,B種型號服裝8件,需要1880元.
(1)求A、B兩種型號的服裝每件分別為多少元?
(2)若銷售一件A型服裝可獲利18元,銷售一件B型服裝可獲利30元,根據(jù)市場需要,服裝店老板決定:購進A型服裝的數(shù)量要比購進B型服裝的數(shù)量的2倍還多4件,且A型服裝最多可購進28件,這樣服裝全部售出后可使總的獲利不少于699元,問有幾種進貨方案?如何進貨?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(知識生成)
通常情況下、用兩種不同的方法計算同一圖形的面積,可以得到一個恒等式.
(1)如圖 1,請你寫出之間的等量關系是
(知識應用)
(2)根據(jù)(1)中的結論,若,則
(知識遷移)
類似地,用兩種不同的方法計算同一幾何體的情況,也可以得到一個恒等式.如圖 是邊長為的正方體,被如圖所示的分割成 塊.
(3)用不同的方法計算這個正方體的體積,就可以得到一個等式,這個等式可以是
(4)已知,,利用上面的規(guī)律求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場正在熱銷2008年北京奧運會吉祥物“福娃”玩具和徽章兩種奧運商品,5個福娃2枚徽章145元,10個福娃3枚徽章280元(5個福娃為1套),則:
(1)一套“福娃”玩具和一枚徽章的價格各是多少元?
(2)買5套“福娃”玩具和10枚徽章共需要多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠ACB=90°,AC=BC,直線MN經過點C,且AD⊥MN于D, BE⊥MN于E.
(1)當直線MN繞點C旋轉到圖1的位置時,求證:△ADC≌△CEB;
(2)當直線MN繞點C旋轉到圖2的位置時,試問DE、AD、BE的等量關系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖O是邊長為9的等邊三角形ABC內的任意一點,且OD∥BC,交AB于點D,OF∥AB,交AC于點F,OE∥AC,交BC于點E,則OD+OE+OF的值為( )
A. 3 B. 6 C. 8 D. 9
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=13厘米,BC=10厘米,AD⊥BC于點D,動點P從點A出發(fā)以每秒1厘米的速度在線段AD上向終點D運動,設動點運動時間為t秒.
(1)求AD的長;
(2)當P、C兩點的距離為時,求t的值;
(3)動點M從點C出發(fā)以每秒2厘米的速度在射線CB上運動.點M與點P同時出發(fā),且當點P運動到終點D時,點M也停止運動.是否存在t值,使得?若存在,請求出t的值;若不存在,請說明理由.
備用圖
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com