【題目】如圖,正方形OABC的邊長為2,以O為圓心,EF為直徑的半圓經(jīng)過點A,連接AECF相交于點P.將正方形OABCOAOF重合的位置開始,繞著點O逆時針旋轉(zhuǎn)90°的過程中,線段OP的最小值為_____

【答案】22

【解析】

如圖點P運動的路徑是以G為圓心的弧,在⊙G上取一點H,連接EHFH,只要證明∠EGF90°,求出GE的長,根據(jù)OPPGOG即可解決問題.

解:如圖點P運動的路徑是以G為圓心的弧,在⊙G上取一點H,連接EHFH.,連接OPPG

∵四邊形AOCB是正方形,

∴∠AOC90°

∴∠AFPAOC45°,

EF是⊙O直徑,

∴∠EAF90°,

∴∠APF=∠AFP45°,

∴∠EPF135°

EF是定值,

∴點P在以點G為圓心,GE為半徑的圓上,

∴∠H=∠APF45°

∴∠EGF2H90°,

EF4,GEGF

EGGF2,

OGOE2,PG2,

OPPGOG

OP≥22

OP的最小值為22

故答案為22

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)為常數(shù),且)中的的部分對應(yīng)值如表:

···

···

···

···

下列結(jié)論錯誤的是(  )

A.B.是關(guān)于的方程的一個根;

C.時,的值隨值的增大而減。D.時,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,的中點,分別交于點

1)求證:

2)求證:

3)若的直徑,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知三角形紙片△ABC和△DEF重合在一起,ABAC,DEDF,△ABC≌△DEF.數(shù)學(xué)實驗課上,張老師讓同學(xué)們用這兩張紙片進行如下操作:

(1)(操作探究1)保持△ABC不動,將△DEF沿射線BC方向平移至圖2所示位置,通過度量發(fā)現(xiàn)BECE12,則SCGESCAB   

(2)(操作探究2)保持△ABC不動,將△DEF通過一次全等變換(平移、旋轉(zhuǎn)或翻折后和△ABC拼成以BC為一條對角線的菱形,請用語言描述你的全等變換過程.

(3)(操作探究3)將兩個三角形按圖3所示放置:點C與點F重合,ABDE.保持△ABC不動,將△DEF沿射線DA方向平移.若AB13BC10,設(shè)△DEF平移的距離為m

m0時,連接ADBE,判斷四邊形ABED的形狀并說明理由;

在平移的過程中,四邊形ABED能否成為正方形?若能,請求出m的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,直線y=-2x+4x軸、y軸于A,B兩點,交雙曲線y=(x<0)C點,OAC的面積為6

(1)求雙曲線的解析式;

(2)如圖②,D為雙曲線y=(x<0)上一點,連接CD,將線段CD繞點D順時針旋轉(zhuǎn)90°得線段DE,點E恰好落在x軸上,求點E的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABBC,以BC為直徑作⊙O,AC交⊙O于點E,過點EEGAB于點F,交CB的延長線于點G

1)求證:EG是⊙O的切線;

2)若GF2,GB4,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為迎接:國家衛(wèi)生城市復(fù)檢,某市環(huán)衛(wèi)局準備購買A,B兩種型號的垃圾箱,通過市場調(diào)研得知:購買3A型垃圾箱和2B型垃圾箱共需540元,購買2A型垃圾箱比購買3B型垃圾箱少用160元.

1)求每個A型垃圾箱和B型垃圾箱各多少元?

2)該市現(xiàn)需要購買A,B兩種型號的垃圾箱共30個,其中買A型垃圾箱不超過16個.

①求購買垃圾箱的總花費w(元)與A型垃圾箱x(個)之間的函數(shù)關(guān)系式;

②當買A型垃圾箱多少個時總費用最少,最少費用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某科技有限公司準備購進AB兩種機器人來搬運化工材料,已知購進A種機器人2個和B種機器人3個共需16萬元,購進A種機器人3個和B種機器人2個共需14萬元,請解答下列問題:

(1)求A、B兩種機器人每個的進價;

(2)已知該公司購買B種機器人的個數(shù)比購買A種機器人的個數(shù)的2倍多4個,如果需要購買A、B兩種機器人的總個數(shù)不少于28個,且該公司購買的A、B兩種機器人的總費用不超過106萬元,那么該公司有哪幾種購買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某經(jīng)銷商銷售一種成本價為10/kg的商品,已知銷售價不低于成本價,且物價部門規(guī)定這種產(chǎn)品的銷售價不得高于18/kg.在銷售過程中發(fā)現(xiàn)銷量ykg)與售價x(元/kg)之間滿足一次函數(shù)關(guān)系,對應(yīng)關(guān)系如下表所示:

⑴求yx之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

⑵若該經(jīng)銷商想使這種商品獲得平均每天168元的利潤,求售價應(yīng)定為多少元/kg?

⑶設(shè)銷售這種商品每天所獲得的利潤為W元,求Wx之間的函數(shù)關(guān)系式;并求出該商品銷售單價定為多少元時,才能使經(jīng)銷商所獲利潤最大?最大利潤是多少?

查看答案和解析>>

同步練習冊答案