精英家教網 > 初中數學 > 題目詳情

若二次函數圖像的頂點坐標為(1,-2),且圖像與x軸兩交點間的距離為4,則該函數的解析式為________.

答案:
解析:

y=-x-


練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,在平面直角坐標系中,直線y=-2x+42交x軸與點A,交直線y=x于點B,拋物線分別交線段AB、OB于點C、D,點C和點D的橫坐標分別為16和4,點P在這條拋物線上.

(1)求點C、D的縱坐標.

(2)求a、c的值.

3)若Q為線段OB上一點,且P、Q兩點的縱坐標都為5,求線段PQ的長.

(4)若Q為線段OB或線段AB上的一點,PQ⊥x軸,設P、Q兩點之間的距離為d(d>0),點Q的橫坐標為m,直接寫出d隨m的增大而減小時m的取值范圍.

(參考公式:二次函數圖像的頂點坐標為

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標系中,直線y=-2x+42交x軸與點A,交直線y=x于點B,拋物線分別交線段AB、OB于點C、D,點C和點D的橫坐標分別為16和4,點P在這條拋物線上.

(1)求點C、D的縱坐標.

(2)求a、c的值.

3)若Q為線段OB上一點,且P、Q兩點的縱坐標都為5,求線段PQ的長.

(4)若Q為線段OB或線段AB上的一點,PQ⊥x軸,設P、Q兩點之間的距離為d(d>0),點Q的橫坐標為m,直接寫出d隨m的增大而減小時m的取值范圍.

(參考公式:二次函數圖像的頂點坐標為

查看答案和解析>>

科目:初中數學 來源:2012年初中畢業(yè)升學考試(吉林長春卷)數學(帶解析) 題型:解答題

如圖,在平面直角坐標系中,直線y=-2x+42交x軸與點A,交直線y=x于點B,拋物線分別交線段AB、OB于點C、D,點C和點D的橫坐標分別為16和4,點P在這條拋物線上.

(1)求點C、D的縱坐標.
(2)求a、c的值.
(3)若Q為線段OB上一點,且P、Q兩點的縱坐標都為5,求線段PQ的長.
(4)若Q為線段OB或線段AB上的一點,PQ⊥x軸,設P、Q兩點之間的距離為d(d>0),點Q的橫坐標為m,直接寫出d隨m的增大而減小時m的取值范圍.
(參考公式:二次函數圖像的頂點坐標為

查看答案和解析>>

科目:初中數學 來源:2012年初中畢業(yè)升學考試(吉林長春卷)數學(解析版) 題型:解答題

如圖,在平面直角坐標系中,直線y=-2x+42交x軸與點A,交直線y=x于點B,拋物線分別交線段AB、OB于點C、D,點C和點D的橫坐標分別為16和4,點P在這條拋物線上.

(1)求點C、D的縱坐標.

(2)求a、c的值.

(3)若Q為線段OB上一點,且P、Q兩點的縱坐標都為5,求線段PQ的長.

(4)若Q為線段OB或線段AB上的一點,PQ⊥x軸,設P、Q兩點之間的距離為d(d>0),點Q的橫坐標為m,直接寫出d隨m的增大而減小時m的取值范圍.

(參考公式:二次函數圖像的頂點坐標為

 

查看答案和解析>>

同步練習冊答案