【題目】將一幅三角板拼成如圖所示的圖形,過點(diǎn)C作CF平分∠DCE交DE于點(diǎn)F.
(1)求證:CF∥AB.
(2)求∠DFC的度數(shù).
【答案】解:(1)證明:∵CF平分∠DCE,∴∠1=∠2=∠DCE。
∵∠DCE=90°,∴∠1=45°。
∵∠3=45°,∴∠1=∠3。∴AB∥CF。
(2)∵∠D=30°,∠1=45°,
∴∠DFC=180°﹣30°﹣45°=105°。
【解析】
試題(1)首先根據(jù)角平分線的性質(zhì)可得∠1=45°,再有∠3=45°,再根據(jù)內(nèi)錯(cuò)角相等兩直線平行可判定出AB∥CF;
(2)利用三角形內(nèi)角和定理進(jìn)行計(jì)算即可.
試題解析:(1)∵CF平分∠DCE,∴∠1=∠2=∠DCE,∵∠DCE=90°,∴∠1=45°,∵∠3=45°,∴∠1=∠3,∴AB∥CF(內(nèi)錯(cuò)角相等,兩直線平行);
(2)∵∠D=30°,∠1=45°,∴∠DFC=180°﹣30°﹣45°=105°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠1和∠2互補(bǔ),∠C=∠EDF.
(1)判斷DF與EC的關(guān)系為 .
(2)試判斷DE與BC的關(guān)系,并說明理由.
(3)試判斷∠DEC與∠DFC的關(guān)系并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算的結(jié)果中,是正數(shù)的是( )
A.(﹣2014)﹣1
B.﹣(2014)﹣1
C.(﹣1)×(﹣2014)
D.(﹣2014)÷2014
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,∠ABK的角平分線BE的反向延長線和∠DCK的角平分線CF的反向延長線交于點(diǎn)H,∠K﹣∠H=27°,則∠K=( )
A. 76° B. 78° C. 80° D. 82°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線AB和CD相交于點(diǎn)O,在∠COB的內(nèi)部作射線OE.
(1)若∠AOC=36°,∠COE=90°,求∠BOE的度數(shù);
(2)若∠COE:∠EOB:∠BOD=4:3:2,求∠AOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,以AC為直徑作⊙O交BC于點(diǎn)D,交AB于點(diǎn)G,且D是BC中點(diǎn),DE⊥AB,垂足為E,交AC的延長線于點(diǎn)F.
(1)求證:直線EF是⊙O的切線;
(2)若CF=5,cosA= ,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題:①對頂角相等;②同位角相等,兩直線平行;③若|a|=|b|,則a=b;④若x=2,則2|x|-1=3.以上命題是真命題的有( ).
A. ①②③④ B. ①④ C. ②④ D. ①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰 Rt△ABC 中,AC=BC=2,點(diǎn) D 是 BC 的中點(diǎn),P 是射線 AD 上的一個(gè)動(dòng)點(diǎn),則當(dāng)△BPC 為直角三角形時(shí),AP 的長為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD∥BC,∠A=90°,E是AB上的一點(diǎn),且AD=BE,∠1=∠2.
(1)求證:△ADE≌△BEC;
(2)若AD=6,AB=14,請求出CD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com