【題目】如圖,在△ABC中,以AC為直徑作⊙O交BC于點(diǎn)D,交AB于點(diǎn)G,且D是BC中點(diǎn),DE⊥AB,垂足為E,交AC的延長(zhǎng)線于點(diǎn)F.
(1)求證:直線EF是⊙O的切線;
(2)若CF=5,cosA= ,求BE的長(zhǎng).
【答案】
(1)證明:如圖,連結(jié)OD.
∵CD=DB,CO=OA,
∴OD是△ABC的中位線,
∴OD∥AB,AB=2OD,
∵DE⊥AB,
∴DE⊥OD,即OD⊥EF,
∴直線EF是⊙O的切線
(2)解:∵OD∥AB,
∴∠COD=∠A.
在Rt△DOF中,∵∠ODF=90°,
∴cos∠FOD= = ,
設(shè)⊙O的半徑為R,則 = ,
解得R= ,
∴AB=2OD= .
在Rt△AEF中,∵∠AEF=90°,
∴cosA= = = ,
∴AE= ,
∴BE=AB﹣AE= ﹣ =2
【解析】(1)連結(jié)OD.先證明OD是△ABC的中位線,根據(jù)中位線的性質(zhì)得到OD∥AB,再由DE⊥AB,得出OD⊥EF,根據(jù)切線的判定即可得出直線EF是⊙O的切線;(2)先由OD∥AB,得出∠COD=∠A,再解Rt△DOF,根據(jù)余弦函數(shù)的定義得到cos∠FOD= = ,設(shè)⊙O的半徑為R,解方程 = ,求出R= ,那么AB=2OD= ,解Rt△AEF,根據(jù)余弦函數(shù)的定義得到cosA= =v,求出AE= ,然后由BE=AB﹣AE即可求解.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解切線的判定定理(切線的判定方法:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,已知AB=AC,∠BAC=90°,E為邊AC上一點(diǎn),連接BE.
(1)如圖1,若∠ABE=15°,O為BE中點(diǎn),連接AO,且AO=1,求BC的長(zhǎng);
(2)如圖2,D為AB上一點(diǎn),且滿足AE=AD,過點(diǎn)A作AF⊥BE交BC于點(diǎn)F,過點(diǎn)F作FG⊥CD交BE的延長(zhǎng)線于點(diǎn)G,交AC于點(diǎn)M,求證:BG=AF+FG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】老師隨機(jī)抽查了本學(xué)期學(xué)生讀課外書冊(cè)數(shù)的情況,繪制成條形統(tǒng)計(jì)圖(如圖1)和不完整的扇形圖(如圖2),其中條形統(tǒng)計(jì)圖被墨跡遮蓋了一部分.
(1)求條形統(tǒng)計(jì)圖中被遮蓋的數(shù),并寫出冊(cè)數(shù)的中位數(shù);
(2)隨后又補(bǔ)查了另外幾人,得知最少的讀了6冊(cè),將其與之前的數(shù)據(jù)合并后,發(fā)現(xiàn)冊(cè)數(shù)的中位數(shù)沒有改變,則最多補(bǔ)查了____人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:AB∥CD,∠BAE=∠DCF,AC,EF相交于點(diǎn)M,有FM=EM.
(1)求證:AE∥CF;
(2)若AM平分∠FAE,求證:FE垂直平分AC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一幅三角板拼成如圖所示的圖形,過點(diǎn)C作CF平分∠DCE交DE于點(diǎn)F.
(1)求證:CF∥AB.
(2)求∠DFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市實(shí)行階梯電價(jià)制度,居民家庭每月用電量不超過80千瓦時(shí)時(shí),實(shí)行“基本電價(jià)”;當(dāng)每月用電量超過80千瓦時(shí)時(shí),超過部分實(shí)行“提高電價(jià)”.去年小張家4月用電量為100千瓦時(shí),交電費(fèi)68元;5月用電量為120千瓦時(shí),交電費(fèi)88元.則基本電價(jià)”是__元/千瓦時(shí),“提高電價(jià)”是__元/千瓦時(shí).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC沿直線l向右移了3厘米,得△FDE,且BC=6厘米,∠B=40°.
(1)求BE;
(2)求∠FDB的度數(shù);
(3)找出圖中相等的線段(不另添加線段);
(4)找出圖中互相平行的線段(不另添加線段).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一架長(zhǎng)2.5米的梯子AB如圖所示斜靠在一面墻上,這時(shí)梯足B離墻底C(∠C=90°)的距離BC為0.7米.
(1)求此時(shí)梯頂A距地面的高度AC;
(2)如果梯頂A下滑0.9米,那么梯足B在水平方向,向右滑動(dòng)了多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)M為直線AB上一動(dòng)點(diǎn), 都是等邊三角形,連接BN
求證: ;
分別寫出點(diǎn)M在如圖2和圖3所示位置時(shí),線段AB、BM、BN三者之間的數(shù)量關(guān)系不需證明;
如圖4,當(dāng)時(shí),證明: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com