【題目】如圖:平行四邊形ABCD中,E為AB中點(diǎn),,連E、F交AC于G,則AG:GC=______________;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,線段AB經(jīng)過圓心O,交⊙O于點(diǎn)A、C,點(diǎn)D為⊙O上一點(diǎn),連結(jié)AD、OD、BD,∠A=∠B=30°.
(1)求證:BD是⊙O的切線.
(2)若OA=5,求OA、OD與AD圍成的扇形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,⊙A的圓心A的坐標(biāo)為(﹣1,0),半徑為1,點(diǎn)P為直線y=﹣x+3上的動(dòng)點(diǎn),過點(diǎn)P作⊙A的切線,切點(diǎn)為Q,則切線長PQ的最小值是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CB=CA,∠ACB=90°,點(diǎn)D在邊BC上(與B,C不重合),四邊形ADEF為正方形,過點(diǎn)F作FG⊥CA,交CA的延長線于點(diǎn)G,連接FB,交DE于點(diǎn)Q,給出以下結(jié)論:①AC=FG;②S△FAB∶S四邊形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正確結(jié)論的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在四邊形ABCD中,點(diǎn)E、F分別是AB、CD的中點(diǎn),過點(diǎn)E作AB的垂線,過點(diǎn)F作CD的垂線,兩垂線交于點(diǎn)G,連接AG、BG、CG、DG,且∠AGD=∠BGC.
(1)求證:AD=BC;
(2)求證:△AGD∽△EGF;
(3)如圖2,若AD、BC所在直線互相垂直,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知梯形中,∥,且,,。
⑴如圖,P為上的一點(diǎn),滿足∠BPC=∠A,求AP的長;
⑵如果點(diǎn)P在邊上移動(dòng)(點(diǎn)P與點(diǎn)不重合),且滿足∠BPE=∠A,交直線于點(diǎn)E,同時(shí)交直線DC于點(diǎn)。
①當(dāng)點(diǎn)在線段DC的延長線上時(shí),設(shè),CQ=y,求關(guān)于的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
②寫CE=1時(shí),寫出AP的長(不必寫解答過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c的開口向上,與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),點(diǎn)A的坐標(biāo)為(m,0),且AB=4.
(1)填空:點(diǎn)B的坐標(biāo)為 (用含m的代數(shù)式表示);
(2)把射線AB繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)135°與拋物線交于點(diǎn)P,△ABP的面積為8:
①求拋物線的解析式(用含m的代數(shù)式表示);
②當(dāng)0≤x≤1,拋物線上的點(diǎn)到x軸距離的最大值為時(shí),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組同學(xué)借助無人機(jī)航拍測量某公園內(nèi)一座古塔高度.如圖,無人機(jī)在距離地面168米的A處,測得該塔底端點(diǎn)B的俯角為40°,然后向古塔方向沿水平面飛行50秒到達(dá)點(diǎn)C處,此時(shí)測得該塔頂端點(diǎn)D的俯角為60°.已知無人機(jī)的飛行速度為3米/秒,則這座古塔的高度約為_____米(參考計(jì)算:sin40°≈064.cos40°≈077.tan40°≈0.84.≈1.41. 1.73.結(jié)果精確到0.1米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知是的直徑,過點(diǎn)作,交弦于點(diǎn),交于點(diǎn),且使.
(1)求證:是的切線;
(2)若,,求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com