【題目】如圖,在平面直角坐標系中,△AOP為等邊三角形,A(0,5),點B為y軸正半軸上一動點,以BP為邊作如圖所示等邊△PBC.CA的延長線交x軸交于E.
(1)求證:OB=AC;
(2)求∠CAP的度數(shù);
(3)當B點運動時,AE的長度是否發(fā)生變化?若不發(fā)生變化,請求出AE的值,若發(fā)生變化,請說明理由.
【答案】(1)見解析;(2)∠CAP=60°;(3)不發(fā)生變化,理由見解析.
【解析】
(1)利用等邊三角形的性質(zhì)可知∠OPB=∠APC,然后可證△PBO≌△PCA,則可證OB=AC
(2)由全等三角形的性質(zhì)可知∠PBO=∠PCA,根據(jù)∠BAC=∠BPC=60°及平角的定義即可求出∠CAP的度數(shù).
(3)根據(jù)∠EAO=∠BAC=60°可知∠AEO,從而可知AE=2AO,所以AE的長度不發(fā)生變化.
(1)證明:∵△BPC和△AOP是等邊三角形,
∴OP=AP,BP=PC,∠APO=60°,∠CPB=60°,
∴∠APO+∠APB=∠BPC+∠APB,即∠OPB=∠APC,
在△PBO和△PCA中,
∴△PBO≌△PCA (SAS),
∴OB=AC;
(2)解:由(1)知,△PBO≌△PCA,
∴∠PBO=∠PCA,
∴∠BAC=∠BPC=60°,
又∠OAP=60°,
∴∠CAP=60°;
(3)解:當B點運動時,AE的長度不發(fā)生變化,
理由如下:∵∠EAO=∠BAC=60°,∠AOE=90°,
∴∠AEO=30°,
∴AE=2AO=2,
即當B點運動時,AE的長度不發(fā)生變化.
科目:初中數(shù)學 來源: 題型:
【題目】在學校組織的“文明出行”知識競賽中,8(1)和8(2)班參賽人數(shù)相同,成績分為A、B、C三個等級,其中相應(yīng)等級的得分依次記為A級100分、B級90分、C級80分,達到B級以上(含B級)為優(yōu)秀,其中8(2)班有2人達到A級,將兩個班的成績整理并繪制成如下的統(tǒng)計圖,請解答下列問題:
(1)求各班參賽人數(shù),并補全條形統(tǒng)計圖;
(2)此次競賽中8(2)班成績?yōu)?/span>C級的人數(shù)為_______人;
(3)小明同學根據(jù)以上信息制作了如下統(tǒng)計表:
平均數(shù)(分) | 中位數(shù)(分) | 方差 | |
8(1)班 | m | 90 | n |
8(2)班 | 91 | 90 | 29 |
請分別求出m和n的值,并從優(yōu)秀率和穩(wěn)定性方面比較兩個班的成績;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點A(1,1),B(-1,1),C(0,4).
(1)在平面直角坐標系中描出A,B,C三點;
(2)在同一平面內(nèi),點與三角形的位置關(guān)系有三種:點在三角形內(nèi)、點在三角形邊上、 點在三角形外.若點P在△ABC外,請判斷點P關(guān)于y軸的對稱點P′與△ABC的位置關(guān)系,直接寫出判斷結(jié)果.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小紅駕車從甲地到乙地,她出發(fā)第xh時距離乙地ykm,已知小紅駕車中途休息了1小時,圖中的折線表示她在整個駕車過程中y與x之間的函數(shù)關(guān)系.
(1)B點的坐標為( , );
(2)求線段AB所表示的y與x之間的函數(shù)表達式;
(3)小紅休息結(jié)束后,以60km/h的速度行駛,則點D表示的實際意義是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,E為AC的中點,AD平分∠BAC,BA:CA=2:3,AD與BE相交于點O,若△OAE的面積比△BOD的面積大1,則△ABC的面積是( 。
A. 8 B. 9 C. 10 D. 11
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊三角形的邊長為8,點是邊上一動點(不與點重合),以為邊在的下方作等邊三角形,連接.
(1)在運動的過程中,與有何數(shù)量關(guān)系?請說明理由.
(2)當BE=4時,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與軸交于,兩點(點在軸的正半軸上),與軸交于點,矩形的一條邊在線段上,頂點,分別在線段,上.
求點,,的坐標;
若點的坐標為,矩形的面積為,求關(guān)于的函數(shù)表達式,并指出的取值范圍;
當矩形的面積取最大值時,
①求直線的解析式;
②在射線上取一點,使,若點恰好落在該拋物線上,則________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,直線l1:y=2x+8與坐標軸分別交于A,B兩點,點C在x正半軸上,且OA=OC.點P為線段AC(不含端點)上一動點,將線段OP繞點O逆時針旋轉(zhuǎn)90°,得線段OQ(見圖2)
(1)分別求出點B、點C的坐標;
(2)如圖2,連接AQ,求證:∠OAQ=45°;
(3)如圖2,連接BQ,試求出當線段BQ取得最小值時點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】飛鏢隨機地擲在下面的靶子上.
在每一個靶子中,飛鏢投到區(qū)域、、的概率是多少?
在靶子中,飛鏢投在區(qū)域或中的概率是多少?
在靶子中,飛鏢沒有投在區(qū)域中的概率是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com