【題目】如圖,在△ABC 中,∠ACB=90°,分別以點A和點B為圓心,以相同的長(大于AB)為半徑作弧,兩弧相交于點M和點N,作直線MN交AB于點D,交BC于點E.若AC=3,AB=5,則DE等于_____.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)組織七、八、九年級學(xué)生參加“州慶60年,夢想紅河”作文比賽.該校將收到的參賽作文進(jìn)行分年級統(tǒng)計,繪制了如圖1和圖2兩幅不完整的統(tǒng)計圖. 根據(jù)圖中提供的信息完成以下問題.
(1)扇形統(tǒng)計圖中九年級參賽作文篇數(shù)對應(yīng)的圓心角是 度,并補(bǔ)全條形統(tǒng)計圖;
(2)經(jīng)過評審,全校有4篇作文榮獲特等獎,其中有一篇來自七年級,學(xué)校準(zhǔn)備從特等獎作文中任選兩篇刊登在校刊上,把七年級特等獎作文被選登在校刊上的事件記為A,其它年級特等獎作文被選登在校刊上的事件分別記為B,C,D. 請利用畫樹狀圖或列表的方法求出七年級特等獎作文被選登在?系母怕.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明準(zhǔn)備利用所學(xué)的知識測量旗桿的高度.他設(shè)計了如下的測量方案:選取一個合適觀測點,在地面處垂直地面豎立高度為2米的標(biāo)桿,小明調(diào)整自己的位置到處,使得視線與、在同一直線上,此時測得米,然后小明沿著方向前進(jìn)11米到處,利用隨身攜帶的等腰直角三角形測得點的仰角為45°,已知小明眼睛到地面距離為1.5米(米),請你根據(jù)題中所給的數(shù)據(jù)計算旗桿的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形紙片中,,,折疊紙片使點落在邊上的處,折痕為,過點作交于,連接.
圖1 圖2
(1)求證:四邊形為菱形;
(2)當(dāng)點在邊上移動時,折痕的端點,也隨之移動;
①當(dāng)點與點重合時(如圖2),求菱形的邊長;
②若限定,分別在邊,上移動,則點在邊上移動的最大距離是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某公路局施工隊要修建一條東西方向的公路,已知點周圍100米范圍內(nèi)為古建筑保護(hù)群,在上的點處測得在的北偏東方向上,從向東走400米到達(dá)處,測得在點的北偏西方向上.(參考數(shù)據(jù):,)
(1)是否穿過古建筑保護(hù)群?為什么?
(2)若修路工程順利進(jìn)行,要使修路工程比原計劃提前5天完成,需將原定的工作效率提高,則原計劃完成這項工程需要多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線與x軸分別交于,兩點,與y軸交于點C.
(1)求拋物線的表達(dá)式及頂點D的坐標(biāo);
(2)點F是線段AD上一個動點.
①如圖1,設(shè),當(dāng)k為何值時,.
②如圖2,以A,F,O為頂點的三角形是否與相似?若相似,求出點F的坐標(biāo);若不相似,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1,圖2,圖3是三張形狀和大小完全相同的方格紙,方格紙中每個小正方形的邊長均為1,兩點都在格點上,連結(jié),請完成下列作圖:
(1)以為對角線在圖1中作一個正方形,且正方形各頂點均在格點上.
(2)以為對角線在圖2中作一個矩形,使得矩形面積為6,且矩形各頂點均在格點上.
(3)以為對角線在圖3中作一個面積最小的平行四邊形,且平行四邊形各頂點均在格點上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“奔跑吧,兄弟!”節(jié)目組,預(yù)設(shè)計一個新的游戲:“奔跑”路線需經(jīng)A、B、C、D四地.如圖,其中A、B、C三地在同一直線上,D地在A地北偏東30°方向、在C地北偏西45°方向.C地在A地北偏東75°方向.且BD=BC=30m.從A地到D地的距離是( 。
A. 30m B. 20m C. 30m D. 15m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知點、在直線上,且于點,且,以為直徑在的左側(cè)作半圓于點,且.
(1)若半圓上有一點,則的最大值為__________;
(2)向右沿直線平移得到.
①如圖②,若截半圓的的長為,求的度數(shù);
②當(dāng)半圓與的邊相切時,求平移距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com