【題目】如圖,數(shù)軸上點A、B表示的點分別為-63

1)若數(shù)軸上有一點P,它到A和點B的距離相等,則點P對應(yīng)的數(shù)字是________(直接寫出答案)

2)在上問的情況下,動點Q從點P出發(fā),以3個單位長度/秒的速度在數(shù)軸上向左移動,是否存在某一個時刻,Q點與B點的距離等于 Q點與A點的距離的2倍?若存在,求出點Q運(yùn)動的時間,若不存在,說明理由.

【答案】1-1.5;(2)存在這樣的時刻,點Q運(yùn)動的時間為0.5秒或4.5秒.

【解析】

1)根據(jù)同一數(shù)軸上兩點的距離公式可得結(jié)論;
2)分兩種情況:當(dāng)點QA的左側(cè)或在A的右側(cè)時,根據(jù)Q點與B點的距離等于Q點與A點的距離的2倍可得結(jié)論;

解:(1)數(shù)軸上點A表示的數(shù)為-6;點B表示的數(shù)為3;
AB=9;

PA和點B的距離相等,

∴點P對應(yīng)的數(shù)字為-1.5.

2)由題意得:設(shè)Q點運(yùn)動得時間為t,則QB=4.5+3tQA=

分兩種情況:
①點QA的左邊時,4.5+3t=2,
t=0.5
②點QA的右邊時,4.5+3t=2,
t=4.5
綜上,存在這樣的時刻,點Q運(yùn)動的時間為0.5秒或4.5秒.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 請將下列證明過程補(bǔ)充完整:

已知:∠1=E,∠B=D求證:ABCD

證明:∵ 1=E 已知

D+2=180°

B=D 已知

B+ 2= 180° ( )

ABCD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)解不等式:2x54x+1)﹣3;

2)解關(guān)于x的不等式:x5ax+4)(a≠1).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtAOB中,∠AOB90°,∠BAO30°,以AB為一邊作等邊ABE,作OA的垂直平分線MNAB的垂線AD于點D

1)連接BD,OE.求證:BDOE

2)連接DEABF.求證:FDE的中點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明家需要用鋼管做防盜窗,按設(shè)計要求,其中需要長為0.8米的鋼管100根,還需要長為2.5米的鋼管32根,兩種長度的鋼管粗細(xì)必須相同;并要求這些用料不能是焊接而成的.經(jīng)市場調(diào)查,鋼材市場中符合這種規(guī)格的鋼管每根長均為6米.

1)試問:把一根長為6米的鋼管進(jìn)行裁剪,有下面幾種方法,

請完成填空(余料作廢)

方法①:只裁成為0.8米的用料時,最多可裁7根;

方法②:先裁下12.5米長的用料,余下部分最多能裁成為0.8米長的用料 根;

方法③:先裁下22.5米長的用料,余下部分最多能裁成為0.8米長的用料1 根.

2)分別用(1)中的方法②和方法③各裁剪多少根6米長的鋼管,才能剛好得到所需要的相應(yīng)數(shù)量的材料;

3)試探究:除(2)中方案外,在(1)中還有哪兩種方法聯(lián)合,所需要6米長的鋼管與(2)中根數(shù)相同.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一個形如六邊形的點陣,它的中心是一個點,作為第一層,第二層每邊有兩個點,第三層每邊有三個點,依此類推.

1)填寫下表:

數(shù)

1

2

3

4

5

該層對應(yīng)的點數(shù)

1

6

2)寫出第n層所對應(yīng)的點數(shù)(n≥2).

3)如果某一層共96個點,你知道它是第幾層嗎?

4)有沒有一層,它的點數(shù)為100個?

5)寫出n層的六邊形點陣的總點數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角三角形ABC的直角邊AB=6,BC=8,將直角三角形ABC沿邊BC的方向平移到三角形DEF的位置,DEAC于點G,BE=2,三角形CEG的面積為13.5,下列結(jié)論:

①三角形ABC平移的距離是4; ②EG=4.5;

③AD∥CF; ④四邊形ADFC的面積為6

其中正確的結(jié)論是( )

A. ①② B. ②③ C. ③④ D. ②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】認(rèn)真閱讀并填空:

已知:如圖,∠1=2,∠C=D,試說明:∠A=F

解:∵∠1=2(已知),∠2=3

∴∠1=3(等量代換)

BDEC

∴∠4=C(兩直線平行,同位角相等)

又∠C=D(已知)

∴∠4=D

(內(nèi)錯角相等,兩直線平行)

∴∠A=F

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,如果△ABC與△DEF都是正方形網(wǎng)格中的格點三角形(頂點在格點上),那么SDEF:SABC的值為

查看答案和解析>>

同步練習(xí)冊答案