【題目】閱讀下面材料:

小明遇到這樣一個問題:如圖1,△ABC中,AB=AC,點D在BC邊上,∠DAB=∠ABD,BE⊥AD,垂足為E,求證:BC=2AE.

小明經(jīng)探究發(fā)現(xiàn),過點A作AF⊥BC,垂足為F,得到∠AFB=∠BEA,從而可證△ABF≌△BAE(如圖2),使問題得到解決.

(1)根據(jù)閱讀材料回答:△ABF與△BAE全等的條件是 AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一個)

參考小明思考問題的方法,解答下列問題:

(2)如圖3,△ABC中,AB=AC,∠BAC=90°,D為BC的中點,E為DC的中點,點F在AC的延長線上,且∠CDF=∠EAC,若CF=2,求AB的長;

(3)如圖4,△ABC中,AB=AC,∠BAC=120°,點D、E分別在AB、AC邊上,且AD=kDB(其中0<k<),∠AED=∠BCD,求的值(用含k的式子表示).

【答案】(1)AAS;(2)4;(3)=

【解析】

試題分析:(1)作AF⊥BC,判斷出△ABF≌△BAE(AAS),得出BF=AE,即可;

(2)先求出tan∠DAE=,再由tan∠F=tan∠DAE,求出CG,最后用△DCG∽△ACE求出AC;

(3)構(gòu)造含30°角的直角三角形,設(shè)出DG,在Rt△ABH,Rt△ADN,Rt△ABH中分別用a,k表示出AB=2a(k+1),BH=a(k+1),BC=2BH=a(k+1),CG=a(2k+1),DN=ka,最后用△NDE∽△GDC,求出AE,EC即可.

試題解析:(1)如圖2,作AF⊥BC,∵BE⊥AD,∴∠AFB=∠BEA,在△ABF和△BAE中,∵∠AFB=BEA,DAB=ABD,AB=AB,∴△ABF≌△BAE(AAS),∴BF=AE∵AB=AC,AF⊥BC,∴BF=BC,∴BC=2AE,故答案為:AAS.

(2)如圖3,連接AD,作CG⊥AF,在Rt△ABC中,AB=AC,點D是BC中點,∴AD=CD,∵點E是DC中點,∴DE=CD=AD,∴tan∠DAE==,∵AB=AC,∠BAC=90°,點D為BC中點,∴∠ADC=90°,∠ACB=∠DAC=45°,∴∠F+∠CDF=∠ACB=45°,∵∠CDF=∠EAC,∴∠F+∠EAC=45°,∵∠DAE+∠EAC=45°,∴∠F=∠DAE,∴tan∠F=tan∠DAE=,∴,∴CG=×2=1,∵∠ACG=90°,∠ACB=45°,∴∠DCG=45°,∵∠CDF=∠EAC,∴△DCG∽△ACE,∴,∵CD=AC,CE=CD=AC,∴,∴AC=4;∴AB=4;

(3)如圖4,過點D作DG⊥BC,設(shè)DG=a,在Rt△BGD中,∠B=30°,∴BD=2a,BG=a,∵AD=kDB,∴AD=2ka,AB=BD+AD=2a+2ka=2a(k+1),過點A作AH⊥BC,在Rt△ABH中,∠B=30°,BH=a(k+1),∵AB=AC,AH⊥BC,∴BC=2BH=a(k+1),∴CG=BC﹣BG=a(2k+1),過D作DN⊥AC交CA延長線與N,∵∠BAC=120°,∴∠DAN=60°,∴∠ADN=30°,∴AN=ka,DN=ka,∵∠DGC=∠AND=90°,∠AED=∠BCD,∴△NDE∽△GDC,,∴,∴NE=3ak(2k+1),∴EC=AC﹣AE=AB﹣AE=2a(k+1)﹣2ak(3k+1)=,∴==

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩地相距200km快車速度為120 ,慢車速度為80 ,慢車從甲地出發(fā),快車從乙地出發(fā),
(1)如果兩車同時出發(fā),相向而行,出發(fā)后幾時兩車相遇?相遇時離甲地多遠?
(2)如果兩車同時出發(fā),同向(從乙開始向甲方向)而行,出發(fā)后幾時兩車相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等邊△ABC中,點E在AB上,點D在CA的延長線上,且ED=EC.試探索以下問題:
(1)如圖1,當(dāng)E為AB中點時,試確定線段AD與BE的大小關(guān)系,請你直接寫出結(jié)論:
(2)如圖2,若點E為線段AB上任意一點,(1)中結(jié)論是否成立,若成立,請證明結(jié)論,若不成立,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】-2-(-3)+(-7)=( )
A.5
B.3
C.2
D.-6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)y=(a+3)x+b-2的圖像與x軸交于正半軸,與y軸交于負半軸,則(  )

A. a>-3,b>2 B. a<-3,b<2 C. a>-3,b<2 D. a<-3,b>2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種藥品原價每盒60元,由于醫(yī)療政策改革,價格經(jīng)過兩次下調(diào)后現(xiàn)在售價每盒48.6元,求平均每次下調(diào)的百分率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為5,E是AB上一點,且BE:AE=1:4,若P是對角線AC上一動點,則PB+PE的最小值是 . (結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題
(1)如圖①,若∠B+∠D=∠BED,試猜想AB與CD的位置關(guān)系,并說明理由。
(2)如圖②,要想得到AB∥CD,則∠1、∠2、∠3之間應(yīng)滿足怎樣的位置關(guān)系?請?zhí)剿鳌?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知RtABC中,B=90°,AC=20,AB=10,P是邊AC上一點(不包括端點A、C),過點P作PEBC于點E,過點E作EFAC,交AB于點F.設(shè)PC=x,PE=y.

(1)求y與x的函數(shù)關(guān)系式;

(2)是否存在點P使PEF是Rt?若存在,求此時的x的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案