【題目】如圖,菱形ABCD中,已知∠BAD=120°,∠EGF=60°, ∠EGF的頂點(diǎn)G在菱形對(duì)角線AC上運(yùn)動(dòng),角的兩邊分別交邊BC、CD于E、F.
[Failed to download image : http://192.168.0.10:8086/QBM/2018/5/2/1936696631435264/1937624997150720/STEM/6b570bc424f747a8be031e9f971720ec.png]
(1)如圖甲,當(dāng)頂點(diǎn)G運(yùn)動(dòng)到與點(diǎn)A重合時(shí),求證:EC+CF=BC;
(2)知識(shí)探究:
①如圖乙,當(dāng)頂點(diǎn)G運(yùn)動(dòng)到AC的中點(diǎn)時(shí),請(qǐng)直接寫(xiě)出線段EC、CF與BC的數(shù)量關(guān)系(不需要寫(xiě)出證明過(guò)程);
②如圖丙,在頂點(diǎn)G運(yùn)動(dòng)的過(guò)程中,若,探究線段EC、CF與BC的數(shù)量關(guān)系;
(3)問(wèn)題解決:如圖丙,已知菱形的邊長(zhǎng)為8,BG=7,CF=,當(dāng)>2時(shí),求EC的長(zhǎng)度。
[Failed to download image : http://192.168.0.10:8086/QBM/2018/5/2/1936696631435264/1937624997150720/STEM/1671b8ec524a49feac7097357d4ff9a8.png]
【答案】(1)證明見(jiàn)解析(2)①線段EC,CF與BC的數(shù)量關(guān)系為:CE+CF=BC.②CE+CF=BC(3)
【解析】分析:(1)利用包含60°角的菱形,證明△BAE≌△CAF,可求證.(2)由特殊到一般,證明△CAE′∽△CAE,從而可以得到EC、CF與BC的數(shù)量關(guān)系.(3) 連接BD與AC交于點(diǎn)H,利用三角函數(shù)BH ,AH,CH的長(zhǎng)度,最后求BC長(zhǎng)度.
詳解:
(1)證明:∵四邊形ABCD是菱形,∠BAD=120°,
∴∠BAC=60°,∠B=∠ACF=60°,AB=BC,AB=AC,
∵∠BAE+∠EAC=∠EAC+∠CAF=60°,
[Failed to download image : http://192.168.0.10:8086/QBM/2018/5/2/1936696631435264/1937624997150720/EXPLANATION/d76d152670f6452b8f83f62ba9f41a35.png]
∴∠BAE=∠CAF,
在△BAE和△CAF中,
,
∴△BAE≌△CAF,
∴BE=CF,
∴EC+CF=EC+BE=BC,
即EC+CF=BC;
(2)知識(shí)探究:
①線段EC,CF與BC的數(shù)量關(guān)系為:CE+CF=BC.
②CE+CF=BC.
理由如下:
過(guò)點(diǎn)A作AE′∥EG,AF′∥GF,分別交BC、CD于E′、F′.
[Failed to download image : http://192.168.0.10:8086/QBM/2018/5/2/1936696631435264/1937624997150720/EXPLANATION/f233fd78cd694e2aa6ff6f6aea848566.png]
類(lèi)比(1)可得:E′C+CF′=BC,
∵AE′∥EG,∴△CAE′∽△CAE,
∴,∴CE=CE′,
同理可得:CF=CF′,
∴CE+CF=CE′+CF′=(CE′+CF′)=BC,
即CE+CF=BC;
[Failed to download image : http://192.168.0.10:8086/QBM/2018/5/2/1936696631435264/1937624997150720/EXPLANATION/db33a252ee584146a248213b3c17919b.png]
(3)連接BD與AC交于點(diǎn)H,如圖所示:
在Rt△ABH中,∵AB=8,∠BAC=60°,
∴BH=ABsin60°=8×=,
AH=CH=ABcos60°=8×=4,
∴GH===1,
∴CG=4-1=3,
∴,
∴t=(t>2),
由(2)②得:CE+CF=BC,
∴CE=BC -CF=×8-=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知y=y +y ,y 與x 成正比例,y 與x-1成反比例,并且x=0時(shí)y=1,x=-1時(shí)y=2;求當(dāng)x=2時(shí)y的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料:
∵,,,……,
∴
=
= =.
解答下列問(wèn)題:
(1)在和式中,第6項(xiàng)為______,第n項(xiàng)是__________.
(2)上述求和的想法是通過(guò)逆用分式減法法則,將和式中的各分?jǐn)?shù)轉(zhuǎn)化為兩個(gè)數(shù)之差,使得除首末兩項(xiàng)外的中間各項(xiàng)的和為_______,從而達(dá)到求和的目的.
(3)受此啟發(fā),請(qǐng)你解下面的方程:
.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為BC邊上一點(diǎn),∠B=30°∠DAB=45°.(1)求∠DAC的度數(shù);(2)請(qǐng)說(shuō)明:AB=CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BD是△ABC的角平分線,它的垂直平分線分別交AB,BD,BC于點(diǎn)E,F(xiàn),G,連接ED,DG.
(1)請(qǐng)判斷四邊形EBGD的形狀,并說(shuō)明理由;
(2)若∠ABC=30°,∠C=45°,ED=2,點(diǎn)H是BD上的一個(gè)動(dòng)點(diǎn),求HG+HC的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解下列不等式組
(1)解不等式組,并把解集在數(shù)軸上表示出來(lái).
(2)求不等式組2≤3x﹣7<8的所有整數(shù)解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中,∠ABC=90°,AB=BC,D是AC的中點(diǎn),點(diǎn)E在AC上,點(diǎn)F在BC上,且AE=BF.
(1)求證:DE=DF;
(2)連接EF,求∠DEF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】A城氣象臺(tái)測(cè)得臺(tái)風(fēng)中心在A城正西方向320km的B處,以每小時(shí)40km的速度向北偏東60°的BF方向移動(dòng),距離臺(tái)風(fēng)中心200km的范圍內(nèi)是受臺(tái)風(fēng)影響的區(qū)域.
(1)自己畫(huà)出圖形并解答:A城是否受到這次臺(tái)風(fēng)的影響?為什么?
(2)若A城受到這次臺(tái)風(fēng)影響,那么A城遭受這次臺(tái)風(fēng)影響有多長(zhǎng)時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,△ABC滿足∠BCA=90°,AC=BC=,點(diǎn)A、C分別在x軸和y軸上,當(dāng)點(diǎn)A從原點(diǎn)開(kāi)始沿x軸的正方向運(yùn)動(dòng)時(shí),則點(diǎn)C始終在y軸上運(yùn)動(dòng),點(diǎn)B始終在第一象限運(yùn)動(dòng).
(1)當(dāng)AB∥y軸時(shí),求B點(diǎn)坐標(biāo).
(2)隨著A、C的運(yùn)動(dòng),當(dāng)點(diǎn)B落在直線y=3x上時(shí),求此時(shí)A點(diǎn)的坐標(biāo).
(3)在(2)的條件下,在y軸上是否存在點(diǎn)D,使以O、A、B、D為頂點(diǎn)的四邊形面積是4?如果存在,請(qǐng)直接寫(xiě)出點(diǎn)D的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com