【題目】在水果銷售旺季,某水果店購進(jìn)一種優(yōu)質(zhì)水果,進(jìn)價(jià)為20/千克,售價(jià)不低于20/千克,且不超過32/千克,根據(jù)銷售情況,發(fā)現(xiàn)該水果一天的銷售量(千克)與該天的售價(jià)(元/千克)滿足的關(guān)系為一次函數(shù)

1)某天這種水果的售價(jià)為23.5/千克,求當(dāng)天該水果的銷售量;

2)如果某天銷售這種水果獲利150元,那么該天水果的售價(jià)為多少元?

【答案】1)當(dāng)天該水果的銷售量為33千克;(2)該天水果的售價(jià)為25元.

【解析】

1)將代入解析式中即可求出結(jié)論;

2)根據(jù)“總利潤=每千克利潤×一天的銷售量”即可列出一元二次方程,再結(jié)合x的取值范圍即可求出結(jié)論.

解:(1)∵

當(dāng)時,

答:當(dāng)天該水果的銷售量為33千克;

2)根據(jù)題意得,

解得,

,

答:如果某天銷售這種水果獲利150元,那么該天水果的售價(jià)為25元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,五邊形ABCDE中,∠A140°,∠B120°,∠E90°,CPDP分別是∠BCD、∠EDC的外角平分線,且相交于點(diǎn)P,則∠CPD__________°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】網(wǎng)絡(luò)時代,新興詞匯層出不窮.為了解大眾對網(wǎng)絡(luò)詞匯的理解,某興趣小組舉行了一個我是路人甲的調(diào)查活動:選取四個熱詞A硬核人生,B好嗨哦,C雙擊666”D杠精時代在街道上對流動人群進(jìn)行了抽樣調(diào)查,要求被調(diào)查的每位只能勾選一個最熟悉的熱詞,根據(jù)調(diào)查結(jié)果,該小組繪制了如下的兩幅不完整的統(tǒng)計(jì)圖,請你根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題:

(1)本次調(diào)查中,一共調(diào)查了   名路人.

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)扇形圖中的b=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=-x-t)(x-t+6)與直線y=x-1有兩個交點(diǎn),這兩個交點(diǎn)的縱坐標(biāo)為mn.雙曲線y=的兩個分支分別位于第二、四象限,則t的取值范圍是(

A.t0B.0t6C.1t7D.t1t6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知三角形的三邊分別為6cm8cm、10cm,則這個三角形內(nèi)切圓的半徑是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在RtABC中,∠ACB90°,AC6BC8,⊙OABC的內(nèi)切圓,連接AO,BO,則圖中陰影部分的面積之和為( 。

A.10B.14πC.12D.14

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某校九年級學(xué)生立定跳遠(yuǎn)水平,隨機(jī)抽取該年級50名學(xué)生進(jìn)行測試,并把測試成績(單位:m)繪制成不完整的頻數(shù)分布表和頻數(shù)分布直方圖.

學(xué)生立定跳遠(yuǎn)測試成績的頻數(shù)分布表

分組

頻數(shù)

1.2≤x<1.6

a

1.6≤x<2.0

12

2.0≤x<2.4

b

2.4≤x<2.8

10

請根據(jù)圖表中所提供的信息,完成下列問題:

(1)表中a=   ,b=   ,樣本成績的中位數(shù)落在   范圍內(nèi);

(2)請把頻數(shù)分布直方圖補(bǔ)充完整;

(3)該校九年級共有1000名學(xué)生,估計(jì)該年級學(xué)生立定跳遠(yuǎn)成績在2.4≤x<2.8范圍內(nèi)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線軸交于點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),對稱軸與軸交于點(diǎn)(3,0),且

1)求拋物線的表達(dá)式及頂點(diǎn)坐標(biāo);

2)將拋物線平移,得到的新拋物線的頂點(diǎn)為(0,﹣1),拋物線的對稱軸與兩條拋物線,圍成的封閉圖形為.直線經(jīng)過點(diǎn).若直線與圖形有公共點(diǎn),求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AB為⊙O的弦,過點(diǎn)OAB的平行線,交⊙O于點(diǎn)C,直線OC上一點(diǎn)D滿足∠D=∠ACB

1)判斷直線BD與⊙O的位置關(guān)系,并證明你的結(jié)論;

2)若⊙O的半徑等于4tanACB,求CD的長.

查看答案和解析>>

同步練習(xí)冊答案