【題目】如圖,五邊形ABCDE中,∠A140°,∠B120°,∠E90°CPDP分別是∠BCD、∠EDC的外角平分線,且相交于點(diǎn)P,則∠CPD__________°

【答案】95

【解析】

根據(jù)多邊形的內(nèi)角和定理:(n-2180°,可得出∠BCD、∠EDC的和,從而得出相鄰兩外角和,然后根據(jù)角平分線及三角形內(nèi)角和定理即可得出答案.

解:五邊形ABCDE的內(nèi)角和為:(5-2×180°=540°
∴∠BCD+EDC=540°-140°-120°-90°=190°,
又∵CPDP分別是∠BCD、∠EDC的外角平分線,
∴∠PCD+PDC=360°-BCD-EDC=85°,
根據(jù)三角形內(nèi)角和定理得:∠CPD=180°-85°=95°
故答案為:95

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:

①4ac<b2;②方程ax2+bx+c=0的兩個(gè)根是x1=﹣1,x2=3;

3a+c=0;④當(dāng)y>0時(shí),x的取值范圍是﹣1≤x<3;⑤當(dāng)x<0時(shí),y隨x增大而增大,其中結(jié)論正確的是_____(只需填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=ax2+bx+c(a<0)經(jīng)過(guò)點(diǎn)(-1,0),且滿(mǎn)足4a+2b+c>0.以下結(jié)論(1)a+b>0;(2)a+c>0;(3)-a+b+c>0;(4)b2-2ac>5a2其中正確的個(gè)數(shù)有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,CDAB,OE平分∠AOD,OFOEOGCD,∠CDO50°,則下列結(jié)論:① AOE65°;② OF平分∠BOD;③ GOE=∠DOF;④ AOE=∠GOD,其中正確結(jié)論的個(gè)數(shù)是(

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】黃岡某地杜鵑節(jié)期間,某公司70名職工組團(tuán)前往參觀欣賞,旅游景點(diǎn)規(guī)定:門(mén)票每人60元,無(wú)優(yōu)惠;上山游玩可坐景點(diǎn)觀光車(chē),觀光車(chē)有四座和十一座車(chē),四座車(chē)每輛60元,十一座車(chē)每人10.公司職工正好坐滿(mǎn)每輛車(chē)且總費(fèi)用不超過(guò)5000元,問(wèn)公司租用的四座車(chē)和十一座車(chē)各多少輛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別是(0,2)、(4,0),點(diǎn)P是直線y=2x+2上的一動(dòng)點(diǎn),當(dāng)以P為圓心,PO為半徑的圓與AOB的一條邊所在直線相切時(shí),點(diǎn)P的坐標(biāo)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y1=(x+1)2+1與y2=a(x﹣4)2﹣3交于點(diǎn)A(1,3),過(guò)點(diǎn)A作x軸的平行線,分別交兩條拋物線于B,C兩點(diǎn),且D,E分別為頂點(diǎn).則下列結(jié)論:

①a=;②AC=AE;③△ABD是等腰直角三角形;④當(dāng)x>1時(shí)y1>y2.

其中正確的結(jié)論是(  )

A. ①③④ B. ①③ C. ①②④ D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,以點(diǎn)為圓心,以為半徑的圓與軸相交于點(diǎn),與軸相交于點(diǎn)

(1)若拋物線經(jīng)過(guò)兩點(diǎn),求拋物線的解析式,并判斷點(diǎn)是否在該拋物線上.

(2)在(1)中的拋物線的對(duì)稱(chēng)軸上求一點(diǎn),使得的周長(zhǎng)最。

(3)設(shè)為(1)中的拋物線的對(duì)稱(chēng)軸上的一點(diǎn),在拋物線上是否存在這樣的點(diǎn),使得四邊形是平行四邊形.若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將一個(gè)長(zhǎng)方形放置在平面直角坐標(biāo)系中,,點(diǎn)的中點(diǎn),反比例函數(shù)圖像過(guò)點(diǎn)且和相交于點(diǎn).

(1)求直線和反比例函數(shù)的解析式;

(2)求四邊形的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案