【題目】如圖,在Rt△ABC中,∠ACB=,D是AB邊上的一點,過D作DE⊥AB交AC于點E,BC=BD,連結CD交BE于點F.
(1)求證:CE=DE;
(2)若點D為AB的中點,求∠AED的度數(shù).
【答案】(1)證明見解析;(2)60°;
【解析】
(1)直接證明Rt△DEB≌Rt△CEB,即可解決問題.
(2)首先證明△ADE≌△BDE,進而證明∠AED=∠DEB=∠CEB,即可解決問題.
(1)∵DE⊥AB,∠ACB=
∴△BCE與△BDE都是直角三角形.
在Rt△BCE與Rt△BDE中
∴Rt△BCE≌Rt△BDE(HL)
∴CE=DE
(2)∵DE⊥AB,
∴∠ADE=∠BDE=
∵點D為AB的中點,
∴AD=BD
又∵DE=DE,
∴△ADE≌△BDE,
∴∠AED=∠DEB
∵△BCE≌△BDE,
∴∠CEB=∠DEB
∴∠AED=∠DEB=∠CEB,
∵∠AED+∠DEB+∠CEB=,
∴∠AED=
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知 中, 厘米,, 厘米,點 為 的中點.如果點 在線段 上以 厘米/秒的速度由 點向 點運動.同時,點 在線段 上由 點以 厘米/秒的速度向 點運動.設運動的時間為 秒.
(1)直接寫出:
①BD=_______厘米; ②BP=________厘米;
③CP=_______厘米; ④CQ=_______厘米;
(可用含 、a的代數(shù)式表示)
(2)若以 ,, 為頂點的三角形和以 ,, 為頂點的三角形全等,試求 、t的值;
(3)若點 以()中的運動速度從點 出發(fā),點 以原來的運動速度從點 同時出發(fā),都逆時針沿 三邊運動.設運動的時間為 秒;直接寫出t= 秒時點 與點 第一次相遇.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,補充條件后仍不一定能保證△ABC≌△A′B′C′,則補充的這個條件是( )
A. BC=B′C′ B. ∠A=∠A′ C. AC=A′C′ D. ∠C=∠C′
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在Rt△ACB中,∠ACB=90°,點D是AB的中點,點E是CD的中點,過點C作CF∥AB叫AE的延長線于點F.
(1)求證:△ADE≌△FCE;
(2)若∠DCF=120°,DE=2,求BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一架云梯AB的長25 m,斜靠在一面墻上,梯子靠墻的一端A距地面距離AC為24 m.
(1)這個梯子底端B離墻的距離BC有多少米?
(2)如果梯子的頂端下滑了4 m,那么梯子的底部在水平方向也滑動了4 m嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】中學生上學帶手機的現(xiàn)象越來越受到社會的關注,為此媒體記者隨機調查了某校若干名學生上學帶手機的目的,分為四種類型:A接聽電話;B收發(fā)短信;C查閱資料;D游戲聊天.并將調查結果繪制成圖1和圖2的統(tǒng)計圖(不完整),請根據圖中提供的信息,解答下列問題:
(1)此次抽樣調查中,共調查了 名學生.
(2)將圖1、圖2補充完整;
(3)現(xiàn)有4名學生,其中A類兩名,B類兩名,從中任選2名學生,求這兩名學生為同一類型的概率(用列表法或樹狀圖法).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=13,AC=5,BC邊上的中線AD=6,點E在AD的延長線上,且AD=DE.
(1)試判斷△ABE的形狀并說明理由;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學習成為現(xiàn)代人的時尚,某市有關部門統(tǒng)計了最近6個月到圖書館的讀者的職業(yè)分布情況,并做了下列兩個不完整的統(tǒng)計圖.
(1)在統(tǒng)計的這段時間內,共有萬人次到圖書館閱讀,其中商人占百分比為%;
(2)將條形統(tǒng)計圖補充完整;
(3)若5月份到圖書館的讀者共28000人次,估計其中約有多少人次讀者是職工?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】由點P(14,1),A(a,0),B(0,a)確定的△PAB的面積為18.
(1)如圖,若0<a<14,求a的值.
(2)如果a>14,請畫圖并求a的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com