【題目】已知,等邊△ABC,點(diǎn) E 在 BA 的延長(zhǎng)線上,點(diǎn) D 在 BC 上,且 ED=EC.
(1)如圖 1,求證:AE=DB;
(2)如圖 2,將△BCE 繞點(diǎn) C 順時(shí)針旋轉(zhuǎn) 60°至△ACF(點(diǎn) B、E 的對(duì)應(yīng)點(diǎn)分別為點(diǎn) A、F),連接 EF.在不添加任何輔助線的情況下,請(qǐng)直接寫出圖中四對(duì)線段,使每對(duì)線段長(zhǎng)度之差等于 AB 的長(zhǎng).
【答案】(1)見解析;(2);;;.
【解析】
(1)在BA上截取BF=BD,連接DF,根據(jù)等邊三角形的性質(zhì)可得∠BAC=∠B=∠ACB=60°,從而證出△BDF為等邊三角形,然后利用AAS證出△CEA≌△EDF,從而得出AE=DF,即可證出結(jié)論;
(2)根據(jù)圖形、全等三角形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)和等量代換即可得出結(jié)論.
解:(1)在BA上截取BF=BD,連接DF
∵△ABC是等邊三角形
∴∠BAC=∠B=∠ACB=60°,
∵BF=BD,
∴△BDF為等邊三角形
∴BD=DF,∠BFD=∠FDB=60°
∴∠BFD=∠BAC
∴FD∥AC
∴∠EAC=∠DFE
∵ED=EC
∴∠EDC=∠ECD
∵∠EDC+∠EDF=180°-∠FDB=120°,∠ECD+∠CEA=180°-∠B=120°
∴∠CEA=∠EDF
在△CEA和△EDF中
∴△CEA≌△EDF
∴AE=DF
∴AE=DB
(2)由圖可知:
∵AE=DB
∴
由旋轉(zhuǎn)的性質(zhì)可得:BE=AF
∴
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象過A(﹣3,m),B(5,m),C(0,m+2),D(﹣1,y1),E(﹣5,y2),F(6,y3),則函數(shù)值y1,y2,y3的大小關(guān)系是( 。
A.y2<y3<y1B.y3<y1<y2C.y2<y1<y3D.y1<y3<y2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△A1B1C1中,A1B1=4,A1C1=5,B1C1=7.點(diǎn)A2,B2,C2分別是邊B1C1,A1C1,A1B1的中點(diǎn);點(diǎn)A3,B3,C3分別是邊B2C2,A2C2,A2B2的中點(diǎn);…以此類推,則第2020個(gè)三角形的周長(zhǎng)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=﹣﹣x+4,
(1)用配方法確定它的頂點(diǎn)坐標(biāo)、對(duì)稱軸;
(2)x取何值時(shí),y隨x增大而減?
(3)x取何值時(shí),拋物線在x軸上方?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小元步行從家去火車站,走到 6 分鐘時(shí),以同樣的速度回家取物品,然后從家乘出租車趕往火車站,結(jié)果比預(yù)計(jì)步行時(shí)間提前了3 分鐘.小元離家路程S(米)與時(shí)間t(分鐘)之間的函數(shù)圖象如圖,從家到火車站路程是( )
A.1300 米B.1400 米C.1600 米D.1500 米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,規(guī)定把一個(gè)點(diǎn)先繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)45°,再作出旋轉(zhuǎn)后的點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn),這稱為一次變換,已知點(diǎn)A的坐標(biāo)為(﹣1,0),則點(diǎn)A經(jīng)過連續(xù)2018次這樣的變換得到的點(diǎn)A2018的坐標(biāo)是___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=a(x﹣m)2﹣m+1(a、m為常數(shù)且a<0),下列結(jié)論:
①這個(gè)函數(shù)圖象的頂點(diǎn)始終在直線y=﹣x+1上;
②a(x-1)(x+3)=﹣1有兩個(gè)根x1和x2,且x1<x2,則﹣3<x1<x2<1;
③點(diǎn)A(x1,y1)與點(diǎn)B(x2,y2)在函數(shù)圖象上,若x1<x2,x1+x2≥2m,則y1≤y2;
④當(dāng)﹣1<x<2時(shí),y隨x的增大而增大,則m的取值范圍為m≥2.
其中正確結(jié)論的序號(hào)是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線(m>0)與x軸的交點(diǎn)為A,B.
(1)求拋物線的頂點(diǎn)坐標(biāo);
(2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).
①當(dāng)m=1時(shí),求線段AB上整點(diǎn)的個(gè)數(shù);
②若拋物線在點(diǎn)A,B之間的部分與線段AB所圍成的區(qū)域內(nèi)(包括邊界)恰有6個(gè)整點(diǎn),結(jié)合函數(shù)的圖象,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,若干個(gè)半徑為3個(gè)單位長(zhǎng)度,圓心角為60°的扇形組成一條連續(xù)的曲線,點(diǎn)P從原點(diǎn)O出發(fā),沿這條曲線向右上下起伏運(yùn)動(dòng),點(diǎn)在直線上的速度為每秒3個(gè)單位長(zhǎng)度,點(diǎn)在弧線上的速度為每秒π個(gè)單位長(zhǎng)度,則2020秒時(shí),點(diǎn)P的坐標(biāo)是( 。
A.(2020,0)B.(3030,0)C.( 3030,)D.(3030,﹣)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com