【題目】如圖,A1B1C1中,A1B14,A1C15,B1C17.點A2B2,C2分別是邊B1C1,A1C1,A1B1的中點;點A3,B3,C3分別是邊B2C2,A2C2A2B2的中點;…以此類推,則第2020個三角形的周長是_____

【答案】

【解析】

由三角形的中位線定理得:B2C2,A2C2,A2B2分別等于A1B1B1C1、C1A1,所以A2B2C2的周長等于A1B1C1的周長的一半,以此類推可求出結(jié)論.

解:∵△A1B1C1中,A1B14,A1C15B1C17,

∴△A1B1C1的周長是16

A2,B2,C2分別是邊B1C1,A1C1,A1B1的中點,

B2C2,A2C2,A2B2分別等于A1B1、B1C1、C1A1

,

以此類推,則A4B4C4的周長是×16,

∴△AnBnn的周長是

則第2020個三角形的周長是

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是半圓弧上一動點,連接AP,作∠APC=45°,交弦AB于點CAB=6cm.小元根據(jù)學習函數(shù)的經(jīng)驗,分別對線段APPC,AC的長度進行了測量.下面是小元的探究過程,請補充完整:

1)下表是點P上的不同位置,畫圖、測量,得到線段AP,PC,AC長度的幾組值,如下表:

①經(jīng)測量m的值是(保留一位小數(shù)).

②在AP,PC,AC的長度這三個量中,確定 的長度是自變量, 的長度和的長度都是這個自變量的函數(shù);

2)在同一平面直角坐標系xOy中,畫出(1)中所確定的函數(shù)圖象;

3)結(jié)合函數(shù)圖象,解決問題:當△ACP為等腰三角形時,AP的長度約為 cm(保留一位小數(shù)).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了豐富校園文化生活,提高學生的綜合素質(zhì),促進中學生全面發(fā)展,學校開展了多種社團活動.小明喜歡的社團有:合唱社團、足球社團、書法社團、科技社團(分別用字母A,B,CD依次表示這四個社團),并把這四個字母分別寫在四張完全相同的不透明的卡片的正面上,然后將這四張卡片背面朝上洗勻后放在桌面上.

1)小明從中隨機抽取一張卡片是足球社團B的概率是   

2)小明先從中隨機抽取一張卡片,記錄下卡片上的字母后不放回,再從剩余的卡片中隨機抽取一張卡片,記錄下卡片上的字母.請你用列表法或畫樹狀圖法求出小明兩次抽取的卡片中有一張是科技社團D的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB3BC5,對角線ACAB.點P從點D出發(fā),沿折線DCCB以每秒1個單位長度的速度向終點B運動(不與點B、D重合),過點PPEAB,交射線BA于點E,連結(jié)BP.設點P的運動時間為t(秒),BPE的面積為S(平方單位).

1ADBC間的距離是   

2)當點PBC上時,求PE的長(用含t的代數(shù)式表示).

3)求St之間的函數(shù)關系式.

4)直接寫出PE將平行四邊形ABCD的面積分成17兩部分時t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=mx+n(m0)的圖象與反比例函數(shù)y(k0)的圖象交于第一、三象限內(nèi)的A、B兩點,與y軸交于點C,過點BBMx軸,垂足為點M,BM=OM=2,點A的縱坐標為4

1)求該反比例函數(shù)和一次函數(shù)的表達式;

2)根據(jù)圖象直接寫出當mx+n時,x的取值范圍;

3)直線ABx軸于點D,過點D作直線lx軸,如果直線l上存在點P,坐標平面內(nèi)存在點Q,使以O、PA、Q為頂點的四邊形是矩形,直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,對角線AC為⊙O的直徑,過點C作AC的垂線交AD的延長線于點E,點F為CE的中點,連接DB,DC,DF.

1求∠CDE的度數(shù);

2求證:DF是⊙O的切線;

3若AC=2DE,求tan∠ABD的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線yax2+bx+3經(jīng)過點A(﹣10)、B30)兩點,且交y軸交于點C

1)求拋物線的解析式;

2)點M是線段BC上的點(不與BC重合),過MMNy軸交拋物線于N,若點M的橫坐標為m,請用m的代數(shù)式表示MN的長;

3)在(2)的條件下,連接NB,NC,是否存在點M,使BNC的面積最大?若存在,求m的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,等邊ABC,點 E BA 的延長線上,點 D BC 上,且 ED=EC

1)如圖 1,求證:AE=DB

2)如圖 2,將BCE 繞點 C 順時針旋轉(zhuǎn) 60°ACF(點 B、E 的對應點分別為點 A、F),連接 EF.在不添加任何輔助線的情況下,請直接寫出圖中四對線段,使每對線段長度之差等于 AB 的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形中,,點的中點,點上,,點在線段上.若是以為頂角的等腰三角形且底角與相等,則____

查看答案和解析>>

同步練習冊答案