【題目】如圖,,是外一點(diǎn),平分,若,則的大小是______.
【答案】30°
【解析】
過點(diǎn)B作BE⊥DA,交DA延長線于E,BF⊥DC,交DC延長線于F,過點(diǎn)A作AM⊥BC于M,根據(jù)等腰三角形的性質(zhì)可得MB=BC,根據(jù)角平分線的性質(zhì)可得BE=BM,由∠BCD=150°可得∠BCF=30°,∠FBC=60°,由含30°角的直角三角形的性質(zhì)可得BF=BC=BM,即可證明BM=BE,利用HL可證明△AEB≌△AMB,可得∠ABE=∠ABM=∠ABD+∠DBC,由三角形內(nèi)角和可得∠DBE=∠DBF,根據(jù)角的和差關(guān)系求出∠ABD的度數(shù)即可.
過點(diǎn)B作BE⊥DA,交DA延長線于E,BF⊥DC,交DC延長線于F,過點(diǎn)A作AM⊥BC于M,
∵AB=AC,AM⊥BC,
∴BM=CM=BC,
∵BD平分∠ADC,BE⊥DE,BF⊥DF,
∴BE=BF,
∵∠BCD=150°,
∴∠BCF=30°,∠FBC=60°,
∴BF=BC,
∴BM=BE,
又∵AB=AB,
∴△AEB≌△ANB,
∴∠ABE=∠ABM=∠ABD+∠DBC,
∵∠ADB=∠CDB,∠BED=∠BFD=90°,
∴∠DBE=∠DBF,
∴∠ABD+∠DBC+∠ABD=∠FBC+∠DBC=60°+∠DBC,
∴2∠ABD=60°,
∴∠ABD=30°.
故答案為:30°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在△ABC中,∠ACB=90°,AC=BC,過點(diǎn)C在△ABC外作直線MN,AM⊥MN于M,BN⊥MN于N.
(1)求證:MN=AM+BN.
(2)若過點(diǎn)C在△ABC內(nèi)作直線MN,AM⊥MN于M,BN⊥MN于N,則AM、BN與MN之間有什么關(guān)系?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個(gè)不等實(shí)根x1、x2.
(1)求實(shí)數(shù)k的取值范圍.
(2)若方程兩實(shí)根x1、x2滿足x1+x2=﹣x1x2,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)P,Q分別是邊長為4 cm的等邊△ABC邊AB,BC上的動(dòng)點(diǎn),點(diǎn)P從頂點(diǎn)A,點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),都以1 cm/s的速度分別向B,C運(yùn)動(dòng).
(1)連接AQ,CP交于點(diǎn)M,則P,Q運(yùn)動(dòng)的過程中,∠CMQ的大小變化嗎?若變化,說明理由;若不變,求出它的度數(shù);
(2)何時(shí)△PBQ是直角三角形?
(3)如圖2,若點(diǎn)P,Q在運(yùn)動(dòng)到終點(diǎn)后繼續(xù)在射線 AB,BC上運(yùn)動(dòng),直線AQ,CP交于點(diǎn)M,則∠CMQ的度數(shù)為。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等邊三角形,點(diǎn)D在邊AB上.
(1)如圖1,當(dāng)點(diǎn)E在邊BC上時(shí),求證DE=EB;
(2)如圖2,當(dāng)點(diǎn)E在△ABC內(nèi)部時(shí),猜想ED和EB數(shù)量關(guān)系,并加以證明;
(3)如圖3,當(dāng)點(diǎn)E在△ABC外部時(shí),EH⊥AB于點(diǎn)H,過點(diǎn)E作GE∥AB,交線段AC的延長線于點(diǎn)G,AG=5CG,BH=3.求CG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請(qǐng)按要求完成下面三道小題(本題作圖不要求尺規(guī)作圖).
(1)如圖1,AB=AC.這兩條線段一定關(guān)于∠BAC的______所在直線對(duì)稱,請(qǐng)畫出該直線.
(2)如圖2,已知線段AB和點(diǎn)C.求作線段CD,使它與AB成軸對(duì)稱,且A與C是對(duì)稱點(diǎn),對(duì)稱軸是線段AC的______.
(3)如圖3,任意位置(不成軸對(duì)稱)的兩條線段AB,CD,AB=CD.你能從(1),(2)問中獲得的啟示,對(duì)其中一條線段作兩次軸對(duì)稱使它們重合嗎?如果能,請(qǐng)畫出圖形并簡要描述操作步驟;如果不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點(diǎn)E、F,垂足為O,連接AF、CE.
(1)求證:△AOE≌△COF;
(2)求證:四邊形AFCE為菱形;
(3)求菱形AFCE的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在四邊形ABCD中,E、F是四邊形ABCD的對(duì)角線AC上的兩點(diǎn),且AF=CE,DF=BE,DF∥BE.
(1)求證:△CDF≌△ABE;
(2)求證:四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,直線與軸,軸分別交于,兩點(diǎn).直線與交于點(diǎn)且與軸,軸分別交于,.
圖1 圖2 圖3
(1)求出點(diǎn)坐標(biāo),直線解析式;
(2)如圖2,點(diǎn)為線段上一點(diǎn)(不含端點(diǎn)),連接,一動(dòng)點(diǎn)從出發(fā),沿線段以每秒個(gè)單位的速度運(yùn)動(dòng)到點(diǎn),再沿線段以每秒個(gè)單位的速度運(yùn)動(dòng)到點(diǎn)停止,求點(diǎn)在整個(gè)運(yùn)動(dòng)過程中所用最少時(shí)間時(shí)點(diǎn)的坐標(biāo);
(3)如圖3,平面直角坐標(biāo)系中有一點(diǎn),使得,求點(diǎn)坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com