【題目】如圖,已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點E、F,垂足為O,連接AF、CE.

(1)求證:△AOE≌△COF;

(2)求證:四邊形AFCE為菱形;

(3)求菱形AFCE的周長.

【答案】(1)詳見解析;(2)詳見解析;(3)20cm.

【解析】

(1)求出AO=OC,AOE=COF,根據(jù)平行的性質(zhì)得出∠EAO=FCO,根據(jù)ASA即可得出兩三角形全等;

(2)根據(jù)全等得出OE=OF,推出四邊形是平行四邊形,再根據(jù)EFAC即可推出四邊形是菱形;

(3)設(shè)AF=xcm,則CF=AF=xcm,BF=(8-x)cm,在RtABF中,由勾股定理得出方程42+(8-x2=x2,求出x的值,進而得到菱形AFCE的周長.

(1)證明:∵EFAC的垂直平分線,

AO=OCAOE=COF=90°,

∵四邊形ABCD是矩形,

ADBC,

∴∠EAO=FCO

AOECOF中,

,

∴△AOE≌△COF(ASA);

(2)證明:∵△AOE≌△COF,

OE=OF,

OA=OC

∴四邊形AFCE為平行四邊形,

又∵EFAC,

∴平行四邊形AFCE為菱形;

(3)解:設(shè)AF=xcm,則CF=AF=xcm,BF=(8﹣x)cm,

RtABF中,由勾股定理得:

AB2+BF2=AF2

42+(8﹣x2=x2,

解得x=5.

所以菱形AFCE的周長為5×4=20cm.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點DAB邊的中點,過點D作邊AB的垂線l,El上任意一點,且AC=5BC=8,則△AEC的周長最小值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一張矩形紙板按圖中虛線裁剪成九塊,其中有兩塊是邊長都為的大正方形,兩塊是邊長都為的小正方形,五塊是長為、寬為的全等小矩形,且> .(以上長度單位:cm)

(1)觀察圖形,可以發(fā)現(xiàn)代數(shù)式可以因式分解為 ;

(2)若每塊小矩形的面積為10,四個正方形的面積和為58,試求圖中所有裁剪線(虛線部分)長之和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,外一點,平分,若,則的大小是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,EBC的中點,連接AE并延長交DC的延長線于點F.

(1)求證:AB=CF;

(2)連接DE,若AD=2AB,求證:DEAF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A(1,a是反比例函數(shù)的圖象上一點,直線與反比例函數(shù)的圖象的交點為點B、D,B(3,﹣1),

(1)求反比例函數(shù)的解析式;

(2)求點D坐標(biāo),并直接寫出y1y2x的取值范圍

(3)動點Px,0)x軸的正半軸上運動當(dāng)線段PA與線段PB之差達到最大時,求點P的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點B,與直線l的另一個交點為C(4,n).

(1)求n的值和拋物線的解析式;

(2)點D在拋物線上,DEy軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點D的橫坐標(biāo)為t(0t4),矩形DFEG的周長為p,求p與t的函數(shù)關(guān)系式以及p的最大值;

(3)將AOB繞平面內(nèi)某點M旋轉(zhuǎn)90°或180°,得到A1O1B1,點A、O、B的對應(yīng)點分別是點A1、O1、B1.若A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數(shù)和旋轉(zhuǎn)180°時點A1的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖(1)在ABC中,∠BAC90°ABAC,直線m經(jīng)過點ABD⊥直線mCE⊥直線m,垂足分別為點DE.求證:DEBD+CE;

2)如圖(2)將(1)中的條件改為:在ABC中,ABAC,D、AE三點都在直線m上,并且有∠BDA=∠AEC=∠BACα,其中α為任意銳角或鈍角.請問結(jié)論DEBD+CE是否成立?如成立,請給出證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=-2x+4與x軸、y軸分別交于點A、C,以O(shè)A、OC為邊在第一象限內(nèi)作長方形OABC

(1)求點A、C的坐標(biāo);

(2)將ABC對折,使得點A的與點C重合,折痕交AB于點D,求直線CD的解析式(圖);

(3)在坐標(biāo)平面內(nèi),是否存在點P(除點B外),使得APC與ABC全等?若存在,請直接寫出所有符合條件的點P的坐標(biāo);若不存在,請說明理由

查看答案和解析>>

同步練習(xí)冊答案