精英家教網 > 初中數學 > 題目詳情

【題目】從3名男生和2名女生中隨機抽取2014年南京青奧會志愿者.求下列事件的概率:
(1)抽取1名,恰好是女生;
(2)抽取2名,恰好是1名男生和1名女生.

【答案】
(1)解:5名學生中有2名女生,所以抽取1名,恰好是女生的概率為
(2)解:由樹形圖可得出:共有20種情況,恰好是1名男生和1名女生的情況數有12種,所以概率為
【解析】(1)女生人數除以學生總數即為所求概率;(2)列舉出所有情況,看恰好是1名男生和1名女生的情況數占總情況數的多少即可.
【考點精析】掌握列表法與樹狀圖法和概率公式是解答本題的根本,需要知道當一次試驗要設計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結果,通常采用樹狀圖法求概率;一般地,如果在一次試驗中,有n種可能的結果,并且它們發(fā)生的可能性都相等,事件A包含其中的m中結果,那么事件A發(fā)生的概率為P(A)=m/n.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】根據第5次、第6次人口普查的結果,2000年,2010年我國每10萬人受教育程度的情況如下:
根據圖中的信息,完成下列填空:
(1)2010年我國具有高中文化程度的人口比重為;
(2)2010年我國具有文化程度的人口最多;
(3)同2000年相比,2010年我國具有文化程度的人口增幅最大.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,巳知A點坐標為(5,0),直線y=x+b(b>0)與y軸交于點B,連接AB,∠α=75°,則b的值為( )

A.3
B.
C.4
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知直線l經過點A(1,0),與雙曲線y= (x>0)交于點B(2,1).過點P(p,p﹣1)(p>1)作x軸的平行線分別交雙曲線y= (x>0)和y=﹣ (x<0)于點M、N.
(1)求m的值和直線l的解析式;
(2)若點P在直線y=2上,求證:△PMB∽△PNA;
(3)是否存在實數p,使得SAMN=4SAMP?若存在,請求出所有滿足條件的p的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,E、F分別是正方形ABCD的邊BC、CD上的點,BE=CF,連接AE、BF.將△ABE繞正方形的中心按逆時針方向旋轉到△BCF,旋轉角為α( 0°<α<180°),則∠α=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,在△ABC中,∠BAC=106°,EF、MN分別是AB、AC的垂直平分線,點E、M在BC上,則∠EAN=_____.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知一次函數y= x﹣3與反比例函數 的圖象相交于點A(4,n),與 軸相交于點B.

(1)填空:n的值為 , k的值為
(2)以AB為邊作菱形ABCD,使點C在 軸正半軸上,點D在第一象限,求點D的坐標;
(3)考察反比函數 的圖象,當 時,請直接寫出自變量 的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知菱形ABCD的邊長2,∠A=60°,點E、F分別在邊AB、AD上,若將△AEF沿直線EF折疊,使得點A恰好落在CD邊的中點G處,則EF=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,AM為⊙O的切線,A為切點,過⊙O上一點B作BD⊥AM于點D,BD交⊙O于點C,OC平分∠AOB.
(1)求∠AOB的度數;
(2)當⊙O的半徑為2cm,求CD的長.

查看答案和解析>>

同步練習冊答案