【題目】已知:如圖,AM為⊙O的切線,A為切點(diǎn),過⊙O上一點(diǎn)B作BD⊥AM于點(diǎn)D,BD交⊙O于點(diǎn)C,OC平分∠AOB.
(1)求∠AOB的度數(shù);
(2)當(dāng)⊙O的半徑為2cm,求CD的長.

【答案】
(1)解:∵AM為圓O的切線,

∴OA⊥AM,

∵BD⊥AM,

∴∠OAD=∠BDM=90°,

∴OA∥BD,

∴∠AOC=∠OCB,

∵OB=OC,

∴∠OBC=∠OCB,

∵OC平分∠AOB,

∴∠AOC=∠BOC,

∴∠BOC=∠OCB=∠OBC=60°,

∴∠AOB=120°


(2)解:過點(diǎn)O作OE⊥BD于點(diǎn)E,

∵∠BOC=∠OCB=∠OBC=60°,

∴△OBC是等邊三角形,

∴BE=EC=1,

∵∠OED=∠EDA=∠OAD=90°,

∴四邊形OADE是矩形,

∴DE=OA=2,

∴EC=DC=1.


【解析】(1)由AM為圓O的切線,利用切線的性質(zhì)得到OA與AM垂直,再由BD與AM垂直,得到OA與BD平行,利用兩直線平行內(nèi)錯(cuò)角相等得到一對角相等,再由OC為角平分線得到一對角相等,以及OB=OC,利用等邊對等角得到一對角相等,等量代換得到∠BOC=∠OBC=∠OCB=60°,即可得出答案;(2)過點(diǎn)O作OE⊥BD于點(diǎn)E,進(jìn)而得出四邊形OADE是矩形,得出DC的長即可.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解切線的性質(zhì)定理(切線的性質(zhì):1、經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點(diǎn)的半徑).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從3名男生和2名女生中隨機(jī)抽取2014年南京青奧會志愿者.求下列事件的概率:
(1)抽取1名,恰好是女生;
(2)抽取2名,恰好是1名男生和1名女生.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y= x﹣b與y= x﹣1的圖象之間的距離等于3,則b的值為(
A.﹣2或4
B.2或﹣4
C.4或﹣6
D.﹣4或6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,E在BA的延長線上,AD平分∠CAE.
(1)求證:AD∥BC;
(2)過點(diǎn)C作CG⊥AD于點(diǎn)F,交AE于點(diǎn)G,若AF=4,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的扇形紙片半徑為5cm,用它圍成一個(gè)圓錐的側(cè)面,該圓錐的高是4cm,則該圓錐的底面周長是(
A.3πcm
B.4πcm
C.5πcm
D.6πcm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把直角三角板的直角頂點(diǎn)O放在破損玻璃鏡的圓周上,兩直角邊與圓弧分別交于點(diǎn)M、N,量得OM=8cm,ON=6cm,則該圓玻璃鏡的半徑是(
A. cm
B.5cm
C.6cm
D.10cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,AB=AC,BD、CE是高,BD與CE相交于點(diǎn)O
(1)求證:OB=OC;
(2)若∠ABC=50°,求∠BOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系xOy中,點(diǎn)M為拋物線y=﹣x2+2nx﹣n2+2n的頂點(diǎn),過點(diǎn)(0,4)作x軸的平行線,交拋物線于點(diǎn)P、Q(點(diǎn)P在Q的左側(cè)),PQ=4.

(1)求拋物線的函數(shù)關(guān)系式,并寫出點(diǎn)P的坐標(biāo);
(2)小麗發(fā)現(xiàn):將拋物線y=﹣x2+2nx﹣n2+2n繞著點(diǎn)P旋轉(zhuǎn)180°,所得新拋物線的頂點(diǎn)恰為坐標(biāo)原點(diǎn)O,你認(rèn)為正確嗎?請說明理由;
(3)如圖2,已知點(diǎn)A(1,0),以PA為邊作矩形PABC(點(diǎn)P、A、B、C按順時(shí)針的方向排列),
寫出C點(diǎn)的坐標(biāo):C( , )(坐標(biāo)用含有t的代數(shù)式表示);
(4)若點(diǎn)C在題(2)中旋轉(zhuǎn)后的新拋物線上,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AD平分∠BAC與BC相交于點(diǎn)D,若AD=4,CD=2,則AB的長是

查看答案和解析>>

同步練習(xí)冊答案