【題目】如圖,在中,,將繞點(diǎn)逆時(shí)針方向旋轉(zhuǎn)得到,當(dāng)點(diǎn)落在邊上時(shí),的延長(zhǎng)線恰好經(jīng)過點(diǎn),則的長(zhǎng)為( )
A. 1B. C. -1+D.
【答案】C
【解析】
根據(jù)AB=AC可得∠B=∠ACB,由旋轉(zhuǎn)性質(zhì)可得DE=AB=2,∠ECD=∠ACB,∠E=∠B,進(jìn)而可得∠E=∠ACD,因?yàn)椤?/span>EAC是公共角,可證明△DAC∽△CAE,所以,解方程可得AD的值,由于AD>0,即可得答案.
∵AB=AC,
∴∠B=∠ACB,
∵將繞點(diǎn)逆時(shí)針方向旋轉(zhuǎn)得到,
∴DE=AB=2,∠ECD=∠ACB,∠E=∠B,
∴∠E=∠ACD,
∵∠EAC=∠EAC,
∴△DAC∽△CAE,
∴,
∴22=AD(AD+2),
∴AD2+2AD-4=0,
解得:AD== =-1,
∵AD>0,
∴AD=-1+,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦DE垂直平分半徑OB,垂足為M,DE=4,連接AD,過E作AD平行線交AB延長(zhǎng)線于點(diǎn)C.
(1)求⊙O的半徑;
(2)求證:CE是⊙O的切線;
(3)若弦DF與直徑AB交于點(diǎn)N,當(dāng)∠DNB=30°時(shí),求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校九年級(jí)學(xué)生立定跳遠(yuǎn)水平,隨機(jī)抽取該年級(jí)50名學(xué)生進(jìn)行測(cè)試,并把測(cè)試成績(jī)(單位:m)繪制成不完整的頻數(shù)分布表和頻數(shù)分布直方圖.
學(xué)生立定跳遠(yuǎn)測(cè)試成績(jī)的頻數(shù)分布表
分組 | 頻數(shù) |
1.2≤x<1.6 | a |
1.6≤x<2.0 | 12 |
2.0≤x<2.4 | b |
2.4≤x<2.8 | 10 |
請(qǐng)根據(jù)圖表中所提供的信息,完成下列問題:
(1)表中a= ,b= ,樣本成績(jī)的中位數(shù)落在 范圍內(nèi);
(2)請(qǐng)把頻數(shù)分布直方圖補(bǔ)充完整;
(3)該校九年級(jí)共有1000名學(xué)生,估計(jì)該年級(jí)學(xué)生立定跳遠(yuǎn)成績(jī)?cè)?/span>2.4≤x<2.8范圍內(nèi)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)任意一個(gè)正整數(shù)m,如果,其中n是正整數(shù),則稱m為“優(yōu)數(shù)”,n為m的最優(yōu)拆分點(diǎn),例如:,則72是一個(gè)“優(yōu)數(shù)”,8為72的最優(yōu)拆分點(diǎn).
請(qǐng)寫出一個(gè)大于40小于50的“優(yōu)數(shù)”______,它的最優(yōu)拆分點(diǎn)是______.
把“優(yōu)數(shù)”p的2倍與“優(yōu)數(shù)”q的3倍的差記為,例如:,,則若“優(yōu)數(shù)”p的最優(yōu)拆分點(diǎn)為,“優(yōu)數(shù)”q的最優(yōu)拆分點(diǎn)為t,當(dāng)時(shí),求t的值并判斷它是否為“優(yōu)數(shù)”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)閱讀理解:
如圖①,如果四邊形ABCD滿足AB=AD,CB=CD,∠B=∠D=90°,那么我們把這樣的四邊形叫做“完美箏形”.
將一張如圖①所示的“完美箏形”紙片ABCD先折疊成如圖②所示形狀,再展開得到圖③,其中CE,CF為折痕,∠BCE=∠ECF=∠FCD,點(diǎn)B′為點(diǎn)B的對(duì)應(yīng)點(diǎn),點(diǎn)D′為點(diǎn)D的對(duì)應(yīng)點(diǎn),連接EB′,FD′相交于點(diǎn)O.
簡(jiǎn)單應(yīng)用:
(1)在平行四邊形、矩形、菱形、正方形四種圖形中,一定為“完美箏形”的是 ;
(2)當(dāng)圖③中的∠BCD=120°時(shí),∠AEB′= °;
(3)當(dāng)圖②中的四邊形AECF為菱形時(shí),對(duì)應(yīng)圖③中的“完美箏形”有 個(gè)(包含四邊形ABCD).
拓展提升:
(4)當(dāng)圖③中的∠BCD=90°時(shí),連接AB′,請(qǐng)?zhí)角?/span>∠AB′E的度數(shù),并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一天晚上,哥哥和弟弟拿兩根等長(zhǎng)的標(biāo)桿直立在一盞亮著的路燈下,然后調(diào)整標(biāo)桿位置,使它們?cè)谠撀窡粝碌挠白?/span>恰好在一條直線上(如圖所示).
(1)請(qǐng)?jiān)趫D中畫出路燈燈泡的位置;
(2)哥哥和弟弟測(cè)得如下數(shù)據(jù):米,米,米,兩根標(biāo)桿的距離 米,且.請(qǐng)你根據(jù)以上信息計(jì)算燈泡距離地面的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的袋子中,裝有除顏色外都完全相同的4個(gè)紅球和若干個(gè)黃球.
如果從袋中任意摸出一個(gè)球是紅球的概率為,那么袋中有黃球多少個(gè)?
在的條件下如果從袋中摸出一個(gè)球記下顏色后放回,再摸出一個(gè)球,用列表或畫樹狀圖的方法求出兩次摸出不同顏色球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,CD⊥AB,
(1)圖①中共有 對(duì)相似三角形,寫出來分別為 (不需證明);
(2)已知AB=10,AC=8,請(qǐng)你求出CD的長(zhǎng);
(3)在(2)的情況下,如果以AB為x軸,CD為y軸,點(diǎn)D為坐標(biāo)原點(diǎn)O,建立直角坐標(biāo)系(如圖②),若點(diǎn)P從點(diǎn)C出發(fā),以每秒1個(gè)單位的速度沿線段CB運(yùn)動(dòng),點(diǎn)Q從點(diǎn)B出發(fā),以每秒1個(gè)單位的速度沿線段BA運(yùn)動(dòng),其中一點(diǎn)最先到達(dá)線段的端點(diǎn)時(shí),兩點(diǎn)即刻同時(shí)停止運(yùn)動(dòng);設(shè)運(yùn)動(dòng)時(shí)間為t秒,是否存在點(diǎn)P,使以點(diǎn)B,P,Q為頂點(diǎn)的三角形與△ABC相似?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AD=4,E在AB上且AB=4BE,連接CE,作BF⊥CE于F,正方形對(duì)角線交于O點(diǎn),連接OF,將△COF沿CE翻折得△CGF,連接BG,則BG的長(zhǎng)為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com