【題目】如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點,BD是對角線.
(1)求證:△ADE≌△CBF
(2)若∠ADB是直角,則四邊形BEDF是什么四邊形?證明你的結(jié)論.
【答案】
(1)
證明:∵四邊形ABCD是平行四邊形,
∴AD=BC,AB=CD,∠A=∠C,
∵E、F分別為邊AB、CD的中點,
∴AE=AB,CF=CD,
∴AE=CF,
在△ADE和△CBF中,
∵
,
∴△ADE≌△CBF(SAS);
(2)
解:
若∠ADB是直角,則四邊形BEDF是菱形,理由如下:
解:由(1)可得BE=DF,
又∵AB∥CD,
∴BE∥DF,BE=DF,
∴四邊形BEDF是平行四邊形,
連接EF,在ABCD中,E、F分別為邊AB、CD的中點,
∴DF∥AE,DF=AE,
∴四邊形AEFD是平行四邊形,
∴EF∥AD,
∵∠ADB是直角,
∴AD⊥BD,
∴EF⊥BD,
又∵四邊形BFDE是平行四邊形,
∴四邊形BFDE是菱形.
【解析】(1)由四邊形ABCD是平行四邊形,即可得AD=BC,AB=CD,∠A=∠C,又由E、F分別為邊AB、CD的中點,可證得AE=CF,然后由SAS,即可判定△ADE≌△CBF;
(2)先證明BE與DF平行且相等,然后根據(jù)一組對邊平行且相等的四邊形是平行四邊形,再連接EF,可以證明四邊形AEFD是平行四邊形,所以AD∥EF,又AD⊥BD,所以BD⊥EF,根據(jù)菱形的判定可以得到四邊形是菱形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,平面ADNM⊥平面ABCD,四邊形ABCD是菱形,ADNM是矩形, ,AB=2,AM=1,E是AB的中點.
(1)求證:平面DEM⊥平面ABM;
(2)在線段AM上是否存在點P,使二面角P﹣EC﹣D的大小為 ?若存在,求出AP的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知與成正比例,且當(dāng)時,.
(1)寫出與之間的函數(shù)表達(dá)式;
(2)當(dāng)時,求的值;
(3)若y的取值范圍為,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,∠C=90°,BC=3,D,E分別在AB、AC上,將△ADE沿DE翻折后,點A落在點A′處,若A′為CE的中點,則折痕DE的長為( )
A.
B.3
C.2
D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A、B分別在x,y軸上,點D在第一象限內(nèi),DC⊥x軸于點C,AO=CD=2,AB=DA= ,反比例函數(shù)y= (k>0)的圖像過CD的中點E.
(1)求k的值;
(2)△BFG和△DCA關(guān)于某點成中心對稱,其中點F在y軸上,試判斷點G是否在反比例函數(shù)的圖像上,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線y=x﹣6與x軸、y軸分別交于A、B兩點,點E從B點出發(fā),以每秒1個單位長度的速度沿線段BO向O點移動(不考慮點E與B、O兩點重合的情況),過點E作EF∥AB,交x軸于點F,將四邊形ABEF沿直線EF折疊后,與點A對應(yīng)的點記作點C,與點B對應(yīng)的點記作點D,得到四邊形CDEF,設(shè)點E的運動時間為t秒.
(1)畫出當(dāng)t=2時,四邊形ABEF沿直線EF折疊后的四邊形CDEF(不寫畫法)
(2)在點E運動過程中,CD交x軸于點G,交y軸于點H,試探究t為何值時,△CGF的面積為;
(3)設(shè)四邊形CDEF落在第一象限內(nèi)的圖形面積為S,求S關(guān)于t的函數(shù)解析式,并求出S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課前預(yù)習(xí)是學(xué)習(xí)的重要環(huán)節(jié),為了了解所教班級學(xué)生完成課前預(yù)習(xí)的具體情況,某班主任對本班部分學(xué)生進(jìn)行了為期半個月的跟蹤調(diào)查,他將調(diào)查結(jié)果分為四類:A﹣優(yōu)秀,B﹣良好,C﹣一般,D﹣較差,并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖.
請你根據(jù)統(tǒng)計圖,解答下列問題:
(1)本次一共調(diào)查了多少名學(xué)生?
(2)C類女生有 名,D類男生有 名,并將條形統(tǒng)計圖補充完整;
(3)若從被調(diào)查的A類和C類學(xué)生中各隨機選取一位同學(xué)進(jìn)行“一幫一”互助學(xué)習(xí),請用列表法或畫樹狀圖的方法求出所選同學(xué)中恰好是一位男同學(xué)和一位女同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知下列命題:
①在Rt△ABC中,∠C=90°,若∠A>∠B,則sin∠A>sinB;
②四條線段a,b,c,d中,若=,則ad=bc;
③若a>b,則a(m2+1)>b(m2+1);
④若|﹣x|=﹣x,則x≥0.
其中原命題與逆命題均為真命題的是( 。
A.①②③
B.①②④
C.①③④
D.②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com