如圖,E、F分別是正方形ABCD的邊CD、AD上的點(diǎn),且CE=DF,AE、BF相交于點(diǎn)O,下列結(jié)論:
(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S△AOB=S四邊形DEOF中正確的有( )

A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)
【答案】分析:根據(jù)正方形的性質(zhì)得AB=AD=DC,∠BAD=∠D=90°,則由CE=DF易得AF=DE,根據(jù)“SAS”可判斷△ABF≌△DAE,所以AE=BF;根據(jù)全等的性質(zhì)得∠ABF=∠EAD,
利用∠EAD+∠EAB=90°得到∠ABF+∠EAB=90°,則AE⊥BF;連結(jié)BE,BE>BC,BA≠BE,而BO⊥AE,根據(jù)垂直平分線的性質(zhì)得到OA≠OE;最后根據(jù)△ABF≌△DAE得S△ABF=S△DAE,則S△ABF-S△AOF=S△DAE-S△AOF,即S△AOB=S四邊形DEOF
解答:解:∵四邊形ABCD為正方形,
∴AB=AD=DC,∠BAD=∠D=90°,
而CE=DF,
∴AF=DE,
在△ABF和△DAE中

∴△ABF≌△DAE,
∴AE=BF,所以(1)正確;
∴∠ABF=∠EAD,
而∠EAD+∠EAB=90°,
∴∠ABF+∠EAB=90°,
∴∠AOB=90°,
∴AE⊥BF,所以(2)正確;
連結(jié)BE,
∵BE>BC,
∴BA≠BE,
而BO⊥AE,
∴OA≠OE,所以(3)錯(cuò)誤;
∵△ABF≌△DAE,
∴S△ABF=S△DAE,
∴S△ABF-S△AOF=S△DAE-S△AOF
∴S△AOB=S四邊形DEOF,所以(4)正確.
故選B.
點(diǎn)評:本題考查了全等三角形的判定與性質(zhì):判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的對應(yīng)邊相等.也考查了正方形的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•景德鎮(zhèn)三模)如圖,F(xiàn)、G分別是正五邊形ABCDE的邊BC、CD上的點(diǎn),CF=DG,連接DF、EG.將△DFC繞正五邊形的中心按逆時(shí)針方向旋轉(zhuǎn)到△EGD,旋轉(zhuǎn)角為α(0°<α<180°),則∠α=
72
72
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆江西省景德鎮(zhèn)市九年級第三次質(zhì)檢數(shù)學(xué)試卷(帶解析) 題型:填空題

如圖,F(xiàn)、G分別是正五邊形ABCDE的邊BC、CD上的點(diǎn),CF=DG,連接DF、EG.將△DFC繞正五邊形的中心按逆時(shí)針方向旋轉(zhuǎn)到△EGD,旋轉(zhuǎn)角為α(0°<α<180°),則∠α=    °;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江西省景德鎮(zhèn)市九年級第三次質(zhì)檢數(shù)學(xué)試卷(解析版) 題型:填空題

如圖,F(xiàn)、G分別是正五邊形ABCDE的邊BC、CD上的點(diǎn),CF=DG,連接DF、EG.將△DFC繞正五邊形的中心按逆時(shí)針方向旋轉(zhuǎn)到△EGD,旋轉(zhuǎn)角為α(0°<α<180°),則∠α=    °;

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

如圖,F(xiàn)、G分別是正五邊形ABCDE的邊BC、CD上的點(diǎn),CF=DG,連接DF、EG.將△DFC繞正五邊形的中心按逆時(shí)針方向旋轉(zhuǎn)到△EGD,旋轉(zhuǎn)角為α(0°<α<180°),則∠α=________°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年江蘇省南京市白下區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:填空題

如圖,F(xiàn)、G分別是正五邊形ABCDE的邊BC、CD上的點(diǎn),CF=DG,連接DF、EG.將△DFC繞正五邊形的中心按逆時(shí)針方向旋轉(zhuǎn)到△EGD,旋轉(zhuǎn)角為α(0°<α<180°),則∠α=    °.

查看答案和解析>>

同步練習(xí)冊答案