【題目】在平面直角坐標(biāo)系中(如圖),已知拋物線經(jīng)過點(diǎn),與軸交于點(diǎn),,拋物線的頂點(diǎn)為點(diǎn),對稱軸與軸交于點(diǎn).
(1)求拋物線的表達(dá)式及點(diǎn)的坐標(biāo);
(2)點(diǎn)是軸正半軸上的一點(diǎn),如果,求點(diǎn)的坐標(biāo);
(3)在(2)的條件下,點(diǎn)是位于軸左側(cè)拋物線上的一點(diǎn),如果是以為直角邊的直角三角形,求點(diǎn)的坐標(biāo).
【答案】(1),;(2);(3)或
【解析】
(1)將點(diǎn)A、B 代入拋物線,即可求出拋物線解析式,再化為頂點(diǎn)式即可;
(2)如圖1,連接AB,交對稱軸于點(diǎn)N,則N(-,-2),利用相等角的正切值相等即可求出EH的長,OE的長,可寫出點(diǎn)E的坐標(biāo);
(3)分∠EAP=90°和∠AEP=90°兩種情況討論,通過相似的性質(zhì),用含t的代數(shù)式表示出點(diǎn)P的坐標(biāo),可分別求出點(diǎn)P的坐標(biāo).
解:(1)(1)將點(diǎn)A(-3,-2)、B (0,-2)代入拋物線,
得,,
解得,a=,c=-2,
∴y=x2+4x-2
=(x+)2-5,
∴拋物線解析式為y=x2+4x-2,頂點(diǎn)C的坐標(biāo)為(-,-5);
(2)如圖1,連接AB,交對稱軸于點(diǎn)N,則N(-,-2),
,則,
過作,,
則,
∵OH=3,
∴OE=1,
∴
(3)①如圖2,當(dāng)∠EAP=90°時,
∵∠HEA+∠HAE=90,∠HAE+∠MAP=90°,
∴∠HEA=∠MAP,
又∠AHE=∠PMA=90°,
,
則,設(shè),則
將代入
得(舍),,
∴
②如圖3,當(dāng)∠AEP=90°時,
∵∠EAG+∠AEG=90°,∠AEG+∠PEN=90°,
∴∠AEG=∠EPN,
又∵∠N=∠G=90°,
∴,則
設(shè),則
將代入
得,(舍),
∴
綜上所述:,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知BCAC,圓心O在AC上,點(diǎn)M與點(diǎn)C分別是AC與⊙O的交點(diǎn),點(diǎn)D是MB與⊙O的交點(diǎn),點(diǎn)P是AD延長線與BC的交點(diǎn),且ADAOAMAP,連接OP.
(1)證明:MD//OP;
(2)求證:PD是⊙O的切線;
(3)若AD24,AMMC,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有甲、乙兩個不透明的布袋,甲袋中有兩個完全相同的小球,分別標(biāo)有數(shù)字﹣1和3;乙袋中有三個完全相同的小球,分別標(biāo)有數(shù)字1、0和﹣3.小麗先從甲袋中隨機(jī)取出一個小球,記錄下小球上的數(shù)字為x;再從乙袋中隨機(jī)取出一個小球,記錄下小球上的數(shù)字為y,設(shè)點(diǎn)A的坐標(biāo)為(x,y).
(1)請用表格或樹狀圖列出點(diǎn)A所有可能的坐標(biāo);
(2)求點(diǎn)A在反比例函數(shù)y=圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠B=90°,AB=3cm,BC=4cm.點(diǎn)D在AC上,AD=1cm,點(diǎn)P從點(diǎn)A出發(fā),沿AB勻速運(yùn)動;點(diǎn)Q從點(diǎn)C出發(fā),沿C→B→A→C的路徑勻速運(yùn)動.兩點(diǎn)同時出發(fā),在B點(diǎn)處首次相遇后,點(diǎn)P的運(yùn)動速度每秒提高了2cm,并沿B→C→A的路徑勻速運(yùn)動;點(diǎn)Q保持速度不變,并繼續(xù)沿原路徑勻速運(yùn)動,兩點(diǎn)在D點(diǎn)處再次相遇后停止運(yùn)動,設(shè)點(diǎn)P原來的速度為xcm/s.
(1)點(diǎn)Q的速度為 cm/s(用含x的代數(shù)式表示).
(2)求點(diǎn)P原來的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知拋物線(a<0)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸負(fù)半軸交于點(diǎn)C,頂點(diǎn)為D,已知:S四邊形ACBD=1:4.
(1)求點(diǎn)D的坐標(biāo)(用僅含c的代數(shù)式表示);
(2)若tan∠ACB=,求拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀以下材料,并按要求完成相應(yīng)的任務(wù):
萊昂哈德·歐拉(Leonhard Euler)是瑞士數(shù)學(xué)家,在數(shù)學(xué)上經(jīng)常見到以他的名字命名的重要常數(shù)、公式和定理,下面是歐拉發(fā)現(xiàn)的一個定理:在△ABC 中,R 和 r 分別為外接圓和內(nèi)切圓的半徑,O 和 I 分別為其外心和內(nèi)心,則OI R2Rr .
下面是該定理的證明過程(借助了第(2)問的結(jié)論):
延長AI 交⊙O 于點(diǎn) D,過點(diǎn) I 作⊙O 的直徑 MN,連接 DM,AN.
∵∠D=∠N,∴∠DMI=∠NAI(同弧所對的圓周角相等),
∴△MDI∽△ANI.∴,∴ IA ID IM IN ①
如圖②,在圖 1(隱去 MD,AN)的基礎(chǔ)上作⊙O 的直徑DE,連接BE,BD,BI,IF
∵DE 是⊙O 的直徑,∴∠DBE=90°.
∵⊙I 與 AB 相切于點(diǎn) F,∴∠AFI=90°,
∴∠DBE=∠IFA.
∵∠BAD=∠E(同弧所對圓周角相等),
∴△AIF∽△EDB.
∴,∴②,
由(2)知:,
∴
又∵,
∴ 2Rr(R d )(R d ) ,
∴ R d 2Rr
∴ d R 2Rr
任務(wù):(1)觀察發(fā)現(xiàn): IM R d , IN (用含R,d 的代數(shù)式表示);
(2)請判斷 BD 和 ID 的數(shù)量關(guān)系,并說明理由.(請利用圖 1 證明)
(3)應(yīng)用:若△ABC 的外接圓的半徑為 6cm,內(nèi)切圓的半徑為 2cm,則△ABC 的外心與內(nèi)心之間的距離為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:點(diǎn)P是△ABC內(nèi)部或邊上的點(diǎn)(頂點(diǎn)除外),在△PAB,△PBC,△PCA中,若至少有一個三角形與△ABC相似,則稱點(diǎn)P是△ABC的自相似點(diǎn).
例如:如圖1,點(diǎn)P在△ABC的內(nèi)部,∠PBC=∠A,∠PCB=∠ABC,則△BCP∽△ABC,故點(diǎn)P為△ABC的自相似點(diǎn).
請你運(yùn)用所學(xué)知識,結(jié)合上述材料,解決下列問題:
在平面直角坐標(biāo)系中,點(diǎn)M是曲線C:上的任意一點(diǎn),點(diǎn)N是x軸正半軸上的任意一點(diǎn).
(1) 如圖2,點(diǎn)P是OM上一點(diǎn),∠ONP=∠M, 試說明點(diǎn)P是△MON的自相似點(diǎn); 當(dāng)點(diǎn)M的坐標(biāo)是,點(diǎn)N的坐標(biāo)是時,求點(diǎn)P 的坐標(biāo);
(2) 如圖3,當(dāng)點(diǎn)M的坐標(biāo)是,點(diǎn)N的坐標(biāo)是時,求△MON的自相似點(diǎn)的坐標(biāo);
(3) 是否存在點(diǎn)M和點(diǎn)N,使△MON無自相似點(diǎn),?若存在,請直接寫出這兩點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織學(xué)生書法比賽,對參賽作品按A、B、C、D四個等級進(jìn)行了評定.現(xiàn)隨機(jī)取部分學(xué)生書法作品的評定結(jié)果進(jìn)行分析,并繪制扇形統(tǒng)計圖和條形統(tǒng)計圖如下:
根據(jù)上述信息完成下列問題:
(1)求這次抽取的樣本的容量;
(2)請在圖②中把條形統(tǒng)計圖補(bǔ)充完整;
(3)已知該校這次活動共收到參賽作品750份,請你估計參賽作品達(dá)到B級以上(即A級和B級)有多少份?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AE平分∠BAD,交BC于點(diǎn)E,BF平分∠ABC,交AD于點(diǎn)F,AE與BF交于點(diǎn)P,連接EF,PD.
(1)求證:四邊形ABEF是菱形;
(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com