【題目】如圖,點(diǎn)A的坐標(biāo)為(0,2),點(diǎn)B為一、三象限角平分線上的一個(gè)動(dòng)點(diǎn),BC⊥AB交x軸的正半軸于點(diǎn)C.當(dāng)∠OAB=_____°時(shí),△COB是等腰三角形.
【答案】90或112.5
【解析】
先依據(jù)點(diǎn)B在一、三象限角平分線上求得∠AOB=∠BOC=45°,然后再分為∠BOC=∠OBC和∠OCB=∠BCO、∠BOC=∠BCO三種情況求解即可.
解:∵點(diǎn)B在一、三象限角平分線上,
∴∠BOC=45°.
當(dāng)∠BOC=∠OBC時(shí),∠BOC=∠OBC=45°,
∴BC⊥OC,
∴∠BCO=90°.
又∵BC⊥AB,
∴AB⊥OA,
∴∠OAB=90°.
當(dāng)∠CBO=∠BCO時(shí),∠CBO=67.5°,
∵BC⊥AB,
∴∠CBA=90°,
∴∠ABO=90°﹣67.5°=22.5°.
∴∠OAB=180°﹣∠AOB﹣∠ABO=112.5°.
當(dāng)∠BOC=∠BCO時(shí),∠CBO=90°,則AB∥OB,
∴此種情況不存在.
故答案為:90°或112.5°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,下列結(jié)論:①;②;③;④,其中正確結(jié)論的個(gè)數(shù)為( )
A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,的平分線和邊的垂直平分線相交于點(diǎn),過點(diǎn)作垂直于交的延長(zhǎng)線于點(diǎn),若,則的長(zhǎng)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC=2,∠B=40°,點(diǎn)D在線段BC上運(yùn)動(dòng)(D不與B、C重合),連接AD,作∠ADE=40°,DE交線段AC于E點(diǎn).
(1)當(dāng)∠BDA=115°時(shí),∠BAD=___°,∠DEC=___°;
(2)當(dāng)DC等于多少時(shí),△ABD與△DCE全等?請(qǐng)說(shuō)明理由;
(3)在點(diǎn)D的運(yùn)動(dòng)過程中,△ADE的形狀可以是等腰三角形嗎?若可以,請(qǐng)直接寫出∠BDA的度數(shù);若不可以,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】你吃過拉面嗎?實(shí)際上在做拉面的過程中就滲透著數(shù)學(xué)知識(shí):一定體積的面團(tuán)做成拉面,面條的總長(zhǎng)度是面條的粗細(xì)(橫截面積)的反比例函數(shù),其圖象如圖所示.
寫出與的函數(shù)關(guān)系式:________.
當(dāng)面條粗時(shí),面條總長(zhǎng)度是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,E,F(xiàn)分別是邊AB,CD上的點(diǎn),AE=CF,連接EF,BF,EF與對(duì)角線AC交于點(diǎn)O,且BE=BF,∠BEF=2∠BAC,F(xiàn)C=2,則AB的長(zhǎng)為( 。
A. 8 B. 8 C. 4 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了保證端午龍舟賽在我市漢江水域順利舉辦,某部門工作人員乘快艇到漢江水域考察水情,以每秒10米的速度沿平行于岸邊的賽道AB由西向東行駛.在A處測(cè)得岸邊一建筑物P在北偏東30°方向上,繼續(xù)行駛40秒到達(dá)B處時(shí),測(cè)得建筑物P在北偏西60°方向上,如圖所示,求建筑物P到賽道AB的距離(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于圓,對(duì)角線AC與BD相交于點(diǎn)E,F(xiàn)在AC上,AB=AD,∠BFC=∠BAD=2∠DFC.
求證:
(1)CD⊥DF;
(2)BC=2CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AB是⊙O的直徑,點(diǎn)P是直徑AB上任意一點(diǎn),過點(diǎn)P作弦CD⊥AB,垂足為點(diǎn)P,過B點(diǎn)的直線與線段AD的延長(zhǎng)線交于點(diǎn)F,且∠F=∠ABC.
(1)如圖1,求證:直線BF是⊙O的切線;
(2)如圖2,當(dāng)點(diǎn)P與點(diǎn)O重合時(shí),過點(diǎn)A作⊙O的切線交線段BC的延長(zhǎng)線于點(diǎn)E,在其它條件不變的情況下,判斷四邊形AEBF是什么特殊的四邊形?證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com