【題目】為了保證端午龍舟賽在我市漢江水域順利舉辦,某部門工作人員乘快艇到漢江水域考察水情,以每秒10米的速度沿平行于岸邊的賽道AB由西向東行駛.在A處測得岸邊一建筑物P在北偏東30°方向上,繼續(xù)行駛40秒到達(dá)B處時,測得建筑物P在北偏西60°方向上,如圖所示,求建筑物P到賽道AB的距離(結(jié)果保留根號).

【答案】100.

【解析】如圖,作PCABC,構(gòu)造出RtPACRtPBC,求出AB的長度,利用特殊角的三角函數(shù)值進(jìn)行求解即可得.

如圖,過P點作PCABC,

由題意可知:∠PAC=60°,PBC=30°,

RtPAC中,tanPAC=AC=PC,

RtPBC中,tanPBC=,BC=PC,

AB=AC+BC=PC+PC=10×40=400,

PC=100,

答:建筑物P到賽道AB的距離為100米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某批發(fā)市場批發(fā)甲、乙兩種水果,根據(jù)以往經(jīng)驗和市場行情,預(yù)計夏季某一段時間內(nèi),甲種水果的銷售利潤(萬元)與進(jìn)貨量(噸)近似滿足函數(shù)關(guān)系;乙種水果的銷售利潤(萬元)與進(jìn)貨量(噸)近似滿足函數(shù)關(guān)系(其中,,為常數(shù)),且進(jìn)貨量噸時,銷售利潤萬元;進(jìn)貨量噸時,銷售利潤萬元.

(萬元)與(噸)之間的函數(shù)關(guān)系式.

如果市場準(zhǔn)備進(jìn)甲、乙兩種水果共噸,設(shè)乙種水果的進(jìn)貨量為噸,請你寫出這兩種水果所獲得的銷售利潤之和(萬元)與(噸)之間的函數(shù)關(guān)系式.并求出這兩種水果各進(jìn)多少噸時獲得的銷售利潤之和最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某漁業(yè)養(yǎng)殖場,對每天打撈上來的魚,一部分由工人運到集貿(mào)市場按10/斤銷售,剩下的全部按3/斤的購銷合同直接包銷給外面的某公司:養(yǎng)殖場共有30名工人,每名工人只能參與打撈與到集貿(mào)市場銷售中的一項工作,且每人每天可以打撈魚100斤或銷售魚50斤,設(shè)安排x名員工負(fù)責(zé)打撈,剩下的負(fù)責(zé)到市場銷售.

(1)若養(yǎng)殖場一天的總銷售收入為y元,求yx的函數(shù)關(guān)系式;

(2)若合同要求每天銷售給外面某公司的魚至少200斤,在遵守合同的前提下,問如何分配工人,才能使一天的銷售收入最大?并求出最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A的坐標(biāo)為(0,2),點B為一、三象限角平分線上的一個動點,BCABx軸的正半軸于點C.當(dāng)∠OAB_____°時,COB是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,對角線AC,BD相交于點O

(1)畫出△AOB平移后的三角形,其平移后的方向為射線AD的方向,平移的距離為AD的長.

(2)觀察平移后的圖形,除了矩形ABCD外,還有一種特殊的平行四邊形?請證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線x軸交于A,B兩點(點A在點B的左邊),與y軸正半軸交于點C.

(1)如圖1,若A(-1,0),B(3,0),

求拋物線的解析式;

② P為拋物線上一點連接AC,PC,∠PCO=3∠ACO,求點P的橫坐標(biāo);

(2)如圖2,Dx軸下方拋物線上一點,連DA,DB,∠BDA+2∠BAD=90°,求點D的縱坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程x2+2x+2m=0有兩個不相等的實數(shù)根.

(1)求m的取值范圍;

(2)若x1,x2是一元二次方程x2+2x+2m=0的兩個根,且x12+x22﹣x1x2=8,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知直線的解析式為,直線的解析式為,且的面積為6.

(1)的值.

(2)如圖1,將直線點逆時針旋轉(zhuǎn)得到直線,點軸上,若點軸上的一個動點,點為直線上的一個動點,當(dāng)的值最小時,求此時點的坐標(biāo)及的最小值.

(3)如圖2,將沿著直線平移得到軸交于點,連接、,當(dāng)是等腰三角形時,求此時點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,函數(shù) y kx y 的圖象交于 A、B 兩點, A y 軸的垂線,交函數(shù)的圖象于點 C,連接 BC,則ABC 的面積為(

A. 2 B. 4 C. 6 D. 8

查看答案和解析>>

同步練習(xí)冊答案