【題目】平面內(nèi)的兩條直線有相交和平行兩種位置關(guān)系.

(1)如圖1,若AB∥CD,點(diǎn)P在AB、CD外部,則有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D.得∠BPD=∠B﹣∠D.將點(diǎn)P移到AB、CD內(nèi)部,如圖2,以上結(jié)論是否成立?若成立,說明理由;若不成立,則∠BPD、∠B、∠D之間有何數(shù)量關(guān)系?請(qǐng)證明你的結(jié)論;

(2)在如圖2中,將直線AB繞點(diǎn)B逆時(shí)針方向旋轉(zhuǎn)一定角度交直線CD于點(diǎn)Q,如圖3,則∠BPD、∠B、∠D、∠BQD之間有何數(shù)量關(guān)系?(不需證明);

(3)根據(jù)(2)的結(jié)論求如圖4中∠A+∠B+∠C+∠D+∠E的度數(shù).

【答案】(1)不成立,結(jié)論是∠BPD=∠B+∠D(2)結(jié)論:∠BPD=∠BQD+∠B+∠D(3)∠A+∠B+∠C+∠D+∠E=180°

【解析】(1)不成立,結(jié)論是∠BPD=∠B+∠D.

延長(zhǎng)BP交CD于點(diǎn)E,

∵AB∥CD,∴∠B=∠BED,

又∵∠BPD=∠BED+∠D,∴∠BPD=∠B+∠D;

(2)結(jié)論:∠BPD=∠BQD+∠B+∠D.

連接QP并延長(zhǎng),

∵∠BPE是△BPQ的外角,∠DPE是△PDQ的外角,

∴∠BPE=∠B+∠BQE,∠DPE=∠D+∠DQP,

∴∠BPE+∠DPE=∠B+∠D+∠BQE+∠DQP,即∠BPD=∠BQD+∠B+∠D;

(3)由(2)的結(jié)論得:∠AFG=∠B+∠E.∠AGF=∠C+∠D.

又∵∠A+∠AFG+∠AGF=180°

∴∠A+∠B+∠C+∠D+∠E=180°.

(或由(2)的結(jié)論得:∠AGB=∠A+∠B+∠E且∠AGB=∠CGD,

∴∠A+∠B+∠C+∠D+∠E=180°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小亮家與姥姥家相距24km,小亮800從家出發(fā),騎自行車去姥姥家.媽媽830從家出發(fā),乘車沿相同路線去姥姥家.在同一直角坐標(biāo)系中,小亮和媽媽的行進(jìn)路程Skm)與北京時(shí)間t(時(shí))的函數(shù)圖象如圖所示.根據(jù)圖象得到小亮結(jié)論,其中錯(cuò)誤的是( )

A. 小亮騎自行車的平均速度是12km/h

B. 媽媽比小亮提前0.5小時(shí)到達(dá)姥姥家

C. 媽媽在距家12km處追上小亮

D. 930媽媽追上小亮

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李老師為鍛煉身體一直堅(jiān)持步行上下班.已知學(xué)校到李老師家總路程為2000米.一天,李老師下班后,以45/分的速度從學(xué)校往家走,走到離學(xué)校900米時(shí),正好遇到一個(gè)朋友,停下又聊了半小時(shí),之后以110/分的速度走回了家.李老師回家過程中,離家的路程s(米)與所用時(shí)間t(分)之間的關(guān)系如圖所示.

1)求a,bc的值;

2)求李老師從學(xué)校到家的總時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等腰三角形的兩條邊長(zhǎng)分別是73,則此三角形的周長(zhǎng)為____________ .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察月歷.

(1)根據(jù)月歷中的規(guī)律填空:

   

a

   

   

(2)莉莉國(guó)慶假期外出旅行三天,三天日期之和是27,莉莉是   號(hào)出發(fā)的.

(3)某月小林連續(xù)三周周六外出參加羽毛球比賽并獲得冠軍,三天日期之和是51.

①小林是   號(hào)奪冠的.

②本月1號(hào)星期   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A的坐標(biāo)為(﹣4,4),點(diǎn)B的坐標(biāo)為(0,1).以點(diǎn)A為直角頂點(diǎn)作∠CAD=90°,射線ACy軸的負(fù)半軸于點(diǎn)C,射線ADx軸的負(fù)半軸于點(diǎn)D

1求直線AB的解析式;

2OD﹣OC的值是否為定值?如果是,求出它的值;如果不是,求出它的變化范圍;

3平面內(nèi)存在點(diǎn)P,使得A、BC、P四點(diǎn)能構(gòu)成菱形,

P點(diǎn)坐標(biāo)為 ;

②點(diǎn)Q是射線AC上的動(dòng)點(diǎn),求PQ+DQ的最小值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“早穿皮襖午穿紗”這句民謠形象地描繪了我們新疆奇妙的氣溫變化現(xiàn)象.烏魯木齊市五月的某一天,最低氣溫是t ℃,溫差是15 ℃,則當(dāng)天的最高氣溫是________℃.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明新家裝修,在裝修客廳時(shí),購(gòu)進(jìn)彩色地磚和單色地磚共100塊,共花費(fèi)5600元.已知彩色地磚的單價(jià)是80/塊,單色地磚的單價(jià)是40/塊.

(1)兩種型號(hào)的地磚各采購(gòu)了多少塊?

(2)如果廚房也要鋪設(shè)這兩種型號(hào)的地磚共60塊,且采購(gòu)地磚的費(fèi)用不超過3200元,那么彩色地磚最多能采購(gòu)多少塊?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平行四邊形ABCD中,E,F是對(duì)角線BD上的兩點(diǎn), 如果添加一個(gè)條件使ABE≌△CDF,則添加的條件不能是( 。

A. AE=CF B. BE=FD C. BF=DE D. ∠1=∠2

查看答案和解析>>

同步練習(xí)冊(cè)答案