【題目】某校組織了全校1500名學(xué)生參加傳統(tǒng)文化知識(shí)網(wǎng)絡(luò)競(jìng)賽.賽后隨機(jī)抽取了其中200名學(xué)生的成績(jī)作為樣本進(jìn)行整理,并制作了如下不完整的頻數(shù)分布表和頻數(shù)分布直方圖.
成績(jī)(分) | 頻數(shù)(人) | 頻率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 20 | n |
70≤x<80 | m | 0.15 |
80≤x<90 | 80 | 0.40 |
90≤x<100 | 60 | 0.30 |
請(qǐng)根據(jù)圖表提供的信息,解答下列各題:
(1)表中m= ,n= ,請(qǐng)補(bǔ)全頻數(shù)分布直方圖;
(2)若用扇形統(tǒng)計(jì)圖來(lái)描述成績(jī)分布情況,則分?jǐn)?shù)段80≤x<90對(duì)應(yīng)扇形的圓心角的度數(shù)是 ;
(3)若成績(jī)?cè)?/span>80分以上(包括80分)為合格,則參加這次競(jìng)賽的1500名學(xué)生中成績(jī)合格的大約有多少名?
【答案】(1)m=30、n=0.1,補(bǔ)全圖形如下見解析;(2)144°;(3)參加這次競(jìng)賽的1500名學(xué)生中成績(jī)合格的大約有1050人.
【解析】
(1)由0.15×200求得m,由20÷200求得n;再根據(jù)求得的數(shù)據(jù)補(bǔ)全直方圖;
(2)用360°×0.40即可得到答案;
(3)用成績(jī)80分以上的頻率(0.40+0.30)乘以總?cè)藬?shù)即可得到答案.
(1)m=0.15×200=30、n=20÷200=0.1,補(bǔ)全圖形如下:
故答案為:30、0.1;
(2)分?jǐn)?shù)段80≤x<90對(duì)應(yīng)扇形的圓心角的度數(shù)是360°×0.40=144°,
故答案為:144°;
(3)參加這次競(jìng)賽的1500名學(xué)生中成績(jī)合格的大約有1500×(0.40+0.30)=1050人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知,滿足點(diǎn)在軸的負(fù)半軸上,直角頂點(diǎn)在軸上,點(diǎn)在軸上方.
如圖1所示,若點(diǎn)與原點(diǎn)重合,點(diǎn)的坐標(biāo)是,則點(diǎn)的坐標(biāo)是 ;
如圖2所示,若點(diǎn)的坐標(biāo)是,過(guò)點(diǎn)作軸于,請(qǐng)求出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c (a、b、c為常數(shù)且a≠0)中的x與y的部分對(duì)應(yīng)值如下表,
x | … | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | … |
y | … | 12 | 5 | 0 | -3 | -4 | -3 | 0 | 5 | 12 | … |
下列四個(gè)結(jié)論:
①二次函數(shù)y=ax2+bx+c 有最小值,最小值為-3;
②拋物線與y軸交點(diǎn)為(0,-3);
③二次函數(shù)y=ax2+bx+c 的圖像對(duì)稱軸是x=1;
④本題條件下,一元二次方程ax2+bx+c的解是x1=-1,x2=3.
其中正確結(jié)論的個(gè)數(shù)是( )
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們給出如下定義:順次連接任意一個(gè)四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形.
(1)如圖1,四邊形ABCD中,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn).求證:中點(diǎn)四邊形EFGH是平行四邊形;
(2)如圖2,點(diǎn)P是四邊形ABCD內(nèi)一點(diǎn),且滿足PA=PB,PC=PD,∠APB=∠CPD,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn),猜想中點(diǎn)四邊形EFGH的形狀,并證明你的猜想;
(3)若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點(diǎn)四邊形EFGH的形狀.(不必證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了加強(qiáng)學(xué)生課外閱讀,開闊視野,某校開展了“書香校園,從我做起”的主題活動(dòng).學(xué)校隨機(jī)抽取了部分學(xué)生,對(duì)他們一周的課外閱讀時(shí)間進(jìn)行調(diào)查,繪制出頻數(shù)分布表和頻數(shù)分布直方圖的一部分如下:
課外閱讀時(shí)間(單位:小時(shí)) | 頻數(shù)(人數(shù)) | 頻率 |
0﹤t≤2 | 2 | 0.04 |
2﹤t≤4 | 3 | 0.06 |
4﹤t≤6 | 15 | 0.30 |
6﹤t≤8 | a | 0.50 |
t﹥8 | 5 | b |
請(qǐng)根據(jù)圖表信息回答下列問(wèn)題:
(1)頻數(shù)分布表中的a=b=;
(2)將頻數(shù)分布直方圖補(bǔ)充完整;
(3)學(xué)校將每周課外閱讀時(shí)間在8小時(shí)以上的學(xué)生評(píng)為“閱讀之星”,請(qǐng)你估計(jì)該校2000名學(xué)生中評(píng)為“閱讀之星”的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年春節(jié),一場(chǎng)新冠病毒疫情由武漢開始席卷了整個(gè)中華地區(qū),全國(guó)人民齊心協(xié)力、共同抗疫.為了防止感染,口罩成為了大眾紛紛搶購(gòu)的必需品,由于需求增加導(dǎo)致價(jià)格不斷走高,引起了民眾與政府的高度關(guān)注,據(jù)統(tǒng)計(jì):2020年2月份一盒口罩價(jià)格比2020年1月份上漲了,某市民2020年2月3日在某超市訂購(gòu)了一盒口罩花了52元.
(1)問(wèn):2020年1月份一盒口罩的價(jià)格為多少元?
(2)某超市將進(jìn)貨價(jià)為每盒39元的口罩,按2020年2月3日價(jià)格出售,平均一天能銷售出100盒,經(jīng)調(diào)查表明:口罩的售價(jià)每盒下降1元,其口罩銷售量就增加10盒,超市為了實(shí)現(xiàn)銷售口罩每天有1320元的利潤(rùn),并且盡可能讓顧客得到實(shí)惠,每盒口罩的售價(jià)應(yīng)該下降多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊三角形中,在邊上取兩點(diǎn)、,使.若,,, 則以,,為邊長(zhǎng)的三角形的形狀為( )
A.銳角三角形B.直角三角形C.鈍角三角形D.隨,,的值而定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下列一組圖形中的個(gè)數(shù),其中第1個(gè)圖中共有4個(gè)點(diǎn),第2個(gè)圖中共有10個(gè)點(diǎn),第3個(gè)圖中共有19個(gè)點(diǎn),……,按此規(guī)律第5個(gè)圖中共有點(diǎn)的個(gè)數(shù)是( )
A. 31 B. 46 C. 51 D. 66
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道,任意一個(gè)正整數(shù)都可以進(jìn)行這樣的分解:(是正整數(shù),且),在的所有這種分解中,如果兩因數(shù)之差的絕對(duì)值最小,我們就稱是的最佳分解并規(guī)定:,例如:12可以分解成1×12、2×6、3×4,因?yàn)椋?/span>
,所以3×4是12的最佳分解,所以F(12)=
(1)求F(18)-F(16)的值;
(2)若正整數(shù)是4的倍數(shù),我們稱正整數(shù)為“四季數(shù)”,如果一個(gè)兩位正整數(shù)
(,為自然數(shù)),交換個(gè)位上的數(shù)字與十位上的數(shù)字得到的新兩位正整數(shù)減去原來(lái)的兩位正整數(shù)所得的差為“四季數(shù)”,那么我們稱這個(gè)數(shù)為“有緣數(shù)”,求所有“有緣數(shù)”中的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com