【題目】已知:關(guān)于的方程=0沒(méi)有實(shí)數(shù)根.

的取值范圍;

若關(guān)于的一元二次方程有實(shí)數(shù)根,求證:該方程兩根的符號(hào)相同;

設(shè)中方程的兩根分別為、,若,且為整數(shù),求的最小整數(shù)值.

【答案】 的取值范圍是;證明見(jiàn)解析;的最小值為

【解析】

(1)根據(jù)一元二次方程根的情況與判別式△的關(guān)系解答即可;(2)根據(jù)由于方程mx2+(n-2)x+m-3=0有兩個(gè)實(shí)數(shù)根可知m≠0,當(dāng)m>4時(shí),即可得出兩根的積>0,從而得出方程的兩根符號(hào)相同;(3)由已知得m≠0,α+β= ,αβ=,再根據(jù)α:β=1:2,得出3α=,2α2=,再進(jìn)行整理得出(n-2)2=m(m-3),根據(jù)m>4,且n為整數(shù),得出m為整數(shù),即可得出答案.

∵關(guān)于的方程沒(méi)有實(shí)數(shù)根,

,

,

的取值范圍是;

由于方程有兩個(gè)實(shí)數(shù)根可知,

當(dāng)時(shí),,即方程的兩根之積為正,

故方程的兩根符號(hào)相同.

由已知得:,

,

,

,即

,且為整數(shù),

為整數(shù);

當(dāng)時(shí),

的最小值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“2017年張學(xué)友演唱會(huì)”于6月3日在我市關(guān)山湖奧體中心舉辦,小張去離家2520米的奧體中心看演唱會(huì),到奧體中心后,發(fā)現(xiàn)演唱會(huì)門(mén)票忘帶了,此時(shí)離演唱會(huì)開(kāi)始還有23分鐘,于是他跑步回家,拿到票后立刻找到一輛“共享單車(chē)”原路趕回奧體中心,已知小張騎車(chē)的時(shí)間比跑步的時(shí)間少用了4分鐘,且騎車(chē)的平均速度是跑步的平均速度的1.5倍.

(1)求小張跑步的平均速度;

(2)如果小張?jiān)诩胰∑焙蛯ふ摇肮蚕韱诬?chē)”共用了5分鐘,他能否在演唱會(huì)開(kāi)始前趕到奧體中心?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,現(xiàn)有動(dòng)點(diǎn)從點(diǎn)出發(fā),沿射線(xiàn)方向運(yùn)動(dòng),動(dòng)點(diǎn)從點(diǎn)出發(fā),沿射線(xiàn)方向運(yùn)動(dòng),已知點(diǎn)的速度是,點(diǎn)的速度是,它們同時(shí)出發(fā),經(jīng)過(guò)________秒,的面積是面積的一半?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(題文)(題文)等邊在平面直角坐標(biāo)系中,已知點(diǎn),將繞點(diǎn)O順時(shí)針?lè)较蛐D(zhuǎn)

求出點(diǎn)B的坐標(biāo);

當(dāng)的縱坐標(biāo)相同時(shí),求出a的值;

的條件下直接寫(xiě)出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于的一元二次方程的兩個(gè)正實(shí)數(shù)根分別為,,且,則的值是(

A. 2 B. 6 C. 26 D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)銷(xiāo)售一批名牌襯衫,平均每天可售出件,每件盈利元,為擴(kuò)大銷(xiāo)售增加盈利,盡快減少庫(kù)存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價(jià)一元,市場(chǎng)每天可多售件,問(wèn)他降價(jià)多少元時(shí),才能使每天所賺的利潤(rùn)最大?并求出最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在下列條件中,不能證明ABD≌△ACD的是( ).

A.BD=DC, AB=AC B.ADB=ADC,BD=DC

C.B=CBAD=CAD D. B=C,BD=DC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠EAF=15°,,AB=BC=CD=DE=EF,則∠EDF等于( )

A.90°B.75°C.70°D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,C=90°,AC=BC=4cm,點(diǎn)D是斜邊AB的中點(diǎn),點(diǎn)E從點(diǎn)B出發(fā)以1cm/s的速度向點(diǎn)C運(yùn)動(dòng),點(diǎn)F同時(shí)從點(diǎn)C出發(fā)以一定的速度沿射線(xiàn)CA方向運(yùn)動(dòng),規(guī)定:當(dāng)點(diǎn)E到終點(diǎn)C時(shí)停止運(yùn)動(dòng);設(shè)運(yùn)動(dòng)的時(shí)間為x秒,連接DE、DF.

(1)填空:SABC=   cm2;

(2)當(dāng)x=1且點(diǎn)F運(yùn)動(dòng)的速度也是1cm/s時(shí),求證:DE=DF;

(3)若動(dòng)點(diǎn)F以3cm/s的速度沿射線(xiàn)CA方向運(yùn)動(dòng);在點(diǎn)E、點(diǎn)F運(yùn)動(dòng)過(guò)程中,如果有某個(gè)時(shí)間x,使得ADF的面積與BDE的面積存在兩倍關(guān)系,請(qǐng)你直接寫(xiě)出時(shí)間x的值;

查看答案和解析>>

同步練習(xí)冊(cè)答案