【題目】如圖,已知AB是⊙O的直徑,弦CD⊥AB,垂足為E,∠AOC=60°,OC=2.
(1)求OE和CD的長;
(2)求圖中陰影部分的面積.

【答案】
(1)解:在△OCE中,

∵∠CEO=90°,∠EOC=60°,OC=2,

∴OE= OC=1,

∴CE= OC= ,

∵OA⊥CD,

∴CE=DE,

∴CD=


(2)解:∵SABC= ABEC= ×4× =2 ,


【解析】(1)在△OCE中,利用三角函數(shù)即可求得CE,OE的長,再根據(jù)垂徑定理即可求得CD的長;(2)根據(jù)半圓的面積減去△ABC的面積,即可求解.
【考點(diǎn)精析】通過靈活運(yùn)用垂徑定理和扇形面積計(jì)算公式,掌握垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條。辉趫A上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2)即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)E,F(xiàn)分別在邊AB,BC上,且AE= AB,將矩形沿直線EF折疊,點(diǎn)B恰好落在AD邊上的點(diǎn)P處,連接BP交EF于點(diǎn)Q,對于下列結(jié)論:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等邊三角形.其中正確的是(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊長為15,sin∠BAC= ,則對角線AC的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=x2+bx+c的圖象經(jīng)過點(diǎn)(﹣1,0),(1,﹣2),當(dāng)y隨x的增大而增大時(shí),x的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以四邊形ABCD的邊AB、BC、CD、DA為斜邊分別向外側(cè)作等腰直角三角形,直角頂點(diǎn)分別為E、F、G、H,順次連接這四個(gè)點(diǎn),得四邊形EFGH.

(1)如圖1,當(dāng)四邊形ABCD為正方形時(shí),我們發(fā)現(xiàn)四邊形EFGH是正方形;如圖2,當(dāng)四邊形ABCD為矩形時(shí),請判斷:四邊形EFGH的形狀(不要求證明);
(2)如圖3,當(dāng)四邊形ABCD為一般平行四邊形時(shí),設(shè)∠ADC=α(0°<α<90°),
①試用含α的代數(shù)式表示∠HAE;
②求證:HE=HG;
③四邊形EFGH是什么四邊形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若a+b=﹣2,且a≥2b,則(
A. 有最小值
B. 有最大值1
C. 有最大值2
D. 有最小值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面上,七個(gè)邊長為1的等邊三角形,分別用①至⑦表示(如圖).從④⑤⑥⑦組成的圖形中,取出一個(gè)三角形,使剩下的圖形經(jīng)過一次平移,與①②③組成的圖形拼成一個(gè)正六邊形
(1)你取出的是哪個(gè)三角形?寫出平移的方向和平移的距離;
(2)將取出的三角形任意放置在拼成的正六邊形所在平面,問:正六邊形沒有被三角形蓋住的面積能否等于 ?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C、D在⊙O上,∠A=2∠BCD,點(diǎn)E在AB的延長線上,∠AED=∠ABC
(1)求證:DE與⊙O相切;
(2)若BF=2,DF= ,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不等式組 的解集表示在數(shù)軸上,正確的是(  )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案