【題目】如圖,在矩形ABCD中,點(diǎn)E,F(xiàn)分別在邊AB,BC上,且AE= AB,將矩形沿直線EF折疊,點(diǎn)B恰好落在AD邊上的點(diǎn)P處,連接BP交EF于點(diǎn)Q,對于下列結(jié)論:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等邊三角形.其中正確的是(填序號)
【答案】①④
【解析】解:由折疊可得PE=BE,PF=BF,∠PEF=∠BEF,∠EFB=∠EFP, ∵AE= AB,
∴BE=PE=2AE,
∴∠APE=30°,
∴∠PEF=∠BEF=60°,
∴∠EFB=∠EFP=30°,
∴EF=2BE,PF= PE,
∴①正確,②不正確;
又∵EF⊥BP,
∴EF=2BE=4EQ,
∴③不正確;
又∵PF=BF,∠BFP=2∠EFP=60°,
∴△PBF為等邊三角形,
∴④正確;
所以正確的為①④,
故答案為:①④.
由條件可得∠APE=30°,則∠PEF=∠BEF=60°,可得EF=2BE,PF= PE,EF=2BE=4EQ,從而可判斷出正確的結(jié)論.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=20°,∠ABC與∠ACB的角平分線交于D1 , ∠ABD1與∠ACD1的角平分線交于點(diǎn)D2 , 依此類推,∠ABD4與∠ACD4的角平分線交于點(diǎn)D5 , 則∠BD5C的度數(shù)是( )
A.24°
B.25°
C.30°
D.36°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC的頂點(diǎn)B在反比例函數(shù) 的圖象上,AC邊在x軸上,已知∠ACB=90°,∠A=30°,BC=4,則圖中陰影部分的面積是( )
A.12
B.4
C.12-3
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A、B、C、D均在以BC為直徑的圓上,AD∥BC,AC平分∠BCD,∠ADC=120°,四邊形ABCD的周長為10,則圖中陰影部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在平面直角坐標(biāo)系中,拋物線 交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,且對稱軸為x=﹣2,點(diǎn)P(0,t)是y軸上的一個動點(diǎn).
(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo).
(2)如圖1,當(dāng)0≤t≤4時,設(shè)△PAD的面積為S,求出S與t之間的函數(shù)關(guān)系式;S是否有最小值?如果有,求出S的最小值和此時t的值.
(3)如圖2,當(dāng)點(diǎn)P運(yùn)動到使∠PDA=90°時,Rt△ADP與Rt△AOC是否相似?若相似,求出點(diǎn)P的坐標(biāo);若不相似,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,對角線AC與BD相交于點(diǎn)O,點(diǎn)E是BC上的一個動點(diǎn),連接DE,交AC于點(diǎn)F.
(1)如圖①,當(dāng) 時,求 的值;
(2)如圖②當(dāng)DE平分∠CDB時,求證:AF= OA;
(3)如圖③,當(dāng)點(diǎn)E是BC的中點(diǎn)時,過點(diǎn)F作FG⊥BC于點(diǎn)G,求證:CG= BG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個反比例函數(shù)y= (k>1)和y= 在第一象限內(nèi)的圖象如圖所示,點(diǎn)P在y= 的圖象上,PC⊥x軸于點(diǎn)C,交y= 的圖象于點(diǎn)A,PD⊥y軸于點(diǎn)D,交y= 的圖象于點(diǎn)B,BE⊥x軸于點(diǎn)E,當(dāng)點(diǎn)P在y= 圖象上運(yùn)動時,以下結(jié)論:①BA與DC始終平行;②PA與PB始終相等;③四邊形PAOB的面積不會發(fā)生變化;④△OBA的面積等于四邊形ACEB的面積.其中一定正確的是(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】AB為⊙O直徑,BC為⊙O切線,切點(diǎn)為B,CO平行于弦AD,作直線DC.
①求證:DC為⊙O切線;
②若ADOC=8,求⊙O半徑r.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,弦CD⊥AB,垂足為E,∠AOC=60°,OC=2.
(1)求OE和CD的長;
(2)求圖中陰影部分的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com