【題目】快車和慢車同時(shí)從甲地出發(fā),勻速行駛,快車到達(dá)乙地后,原路返回甲地,慢車到達(dá)乙地停止.圖①表示兩車行駛過程中離甲地的路程y(km)與出發(fā)時(shí)間x(h)的函數(shù)圖象,請結(jié)合圖①中的信息,解答下列問題:
(1)快車的速度為 km/h,慢車的速度為 km/h,甲乙兩地的距離為 km;
(2)求出發(fā)多長時(shí)間,兩車相距100km;
(3)若兩車之間的距離為s km,在圖②的直角坐標(biāo)系中畫出s(km)與x(h)的函數(shù)圖象.
【答案】(1)150,50,300;(2)1 h或2.5h或3.5h;(3)圖象見解析.
【解析】分析:(1)觀察函數(shù)圖象可得出甲、乙兩地間的距離,根據(jù)數(shù)量關(guān)系速度=路程÷時(shí)間即可得出快、慢兩車的速度;
(2)根據(jù)圖象找出點(diǎn)的坐標(biāo),利用待定系數(shù)法可求出線段解析式,由此即可得出結(jié)論;
(3)根據(jù)兩車相遇結(jié)合t=0、2、3、4,6可找出關(guān)鍵點(diǎn),依此畫出函數(shù)圖象即可.
詳解:(1)快車的速度為300÷2=150km/h,慢車的速度為:300÷6=50km/h,甲乙兩地的距離為300km,
故答案為:150,50,300;
(2)快車在行駛過程中離A地的路程y1與時(shí)間x的函數(shù)關(guān)系式:
當(dāng)0≤x<2時(shí),y1=150x,
當(dāng)2≤x≤4時(shí),y1=300-150(x-2),即y1=600-150x.
慢車在行駛過程中離A地的路程y2與時(shí)間x的函數(shù)關(guān)系式:
當(dāng)0≤x≤6時(shí),y2=50x,
由題意,得
①當(dāng)0≤x<2時(shí),y1-y2=100,150x-50x=100,解得x=1;
②當(dāng)2≤x<3時(shí),y1-y2=100,600-150x-50x=100,解得x=2.5;
③當(dāng)3≤x<4時(shí),y2-y1=100,50x-(600-150x)=100,解得x=3.5;
④當(dāng)4≤x≤6時(shí),兩車相距大于100km.
答:出發(fā)1h或2.5h或3.5h后,兩車相距100km;
(3)s與x的函數(shù)圖象如圖所示:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場試銷一種成本為50元/件的恤.經(jīng)試銷發(fā)現(xiàn),銷售量(件)與銷售單價(jià)(元/件)符合一次函數(shù)關(guān)系,試銷數(shù)據(jù)如下表:
售價(jià)(元/件) | …… | 55 | 60 | 70 | …… |
銷量(件) | …… | 75 | 70 | 60 | …… |
(1)求一次函數(shù)的表達(dá)式;
(2)若該商場獲得利潤為W元,試寫出利潤W與銷售單價(jià)之間的關(guān)系式;銷售單價(jià)定為多少時(shí),商場可獲得最大利潤,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一種蔬菜千克,不加工直接出售每千克可賣元;如果經(jīng)過加工重量減少了20%,價(jià)格增加了40%,問:
(1)千克這種蔬菜加工后可賣多少錢;
(2)如果這種蔬菜1000千克,加工后出售一共可賣2576元,問1000千克這種蔬菜不加工直接出售每千克可賣多少錢?1000千克這種蔬菜加工后出售比不加工直接出售一共多賣多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班同學(xué)響應(yīng)“陽光體育運(yùn)動”號召,利用課外活動積極參加體育鍛煉,每位同學(xué)從長跑、鉛球、立定跳遠(yuǎn)、籃球定點(diǎn)投籃中任選一項(xiàng)進(jìn)行了訓(xùn)練,訓(xùn)練前后都進(jìn)行了測試,現(xiàn)將項(xiàng)目選擇情況及訓(xùn)練后籃球定點(diǎn)投籃進(jìn)球數(shù)進(jìn)行整理,作出如下統(tǒng)計(jì)圖表.
訓(xùn)練后籃球定點(diǎn)投籃測試進(jìn)球統(tǒng)計(jì)表:
進(jìn)球數(shù)(個(gè)) | 8 | 7 | 6 | 5 | 4 | 3 |
人數(shù) | 2 | 1 | 4 | 7 | 8 | 2 |
(1)選擇長跑訓(xùn)練的人數(shù)占全班人數(shù)的百分比是 ,該班共有同學(xué) 人.
(2)求訓(xùn)練后籃球定點(diǎn)投籃人均進(jìn)球數(shù)為多少個(gè)?
(3)根據(jù)測試資料,參加籃球定點(diǎn)投籃的學(xué)生訓(xùn)練后比訓(xùn)練前的人均進(jìn)球增加了25%,求參加訓(xùn)練之前的人均進(jìn)球數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=kx+3(1-k)(其中k為常數(shù),k≠0),k取不同數(shù)值時(shí),可得不同直線,請?zhí)骄窟@些直線的共同特征.
實(shí)踐操作
(1)當(dāng)k=1時(shí),直線l1的解析式為 ,請?jiān)趫D1中畫出圖象;當(dāng)k=2時(shí),直線l2的解析式為 ,請?jiān)趫D2中畫出圖象;
探索發(fā)現(xiàn)
(2)直線y=kx+3(1-k)必經(jīng)過點(diǎn)( , );
類比遷移
(3)矩形ABCD如圖2所示,若直線y=kx+k-2(k≠0)分矩形ABCD的面積為相等的兩部分,請?jiān)趫D中直接畫出這條直線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】端午節(jié)期間,甲、乙兩人沿同一路線行駛,各自開車同時(shí)去離家560千米的景區(qū)游玩,甲先以每小時(shí)60千米的速度勻速行駛1小時(shí),再以每小時(shí)m千米的速度勻速行駛,途中體息了一段時(shí)間后,仍按照每小時(shí)m千米的速度勻速行駛,兩人同時(shí)到達(dá)目的地,圖中折線、線段分別表示甲、乙兩人所走的路程,與時(shí)間之間的函數(shù)關(guān)系的圖象請根據(jù)圖象提供的信息,解決下列問題:
圖中E點(diǎn)的坐標(biāo)是______,題中______,甲在途中休息______h;
求線段CD的解析式,并寫出自變量x的取值范圍;
兩人第二次相遇后,又經(jīng)過多長時(shí)間兩人相距20km?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,BA=BC=20cm,AC=30cm,點(diǎn)P從A點(diǎn)出發(fā),沿著AB以每秒4cm的速度向B點(diǎn)運(yùn)動;同時(shí)點(diǎn)Q從C點(diǎn)出發(fā),沿CA以每秒3cm的速度向A點(diǎn)運(yùn)動,設(shè)運(yùn)動時(shí)間為x秒.
(1)當(dāng)x為何值時(shí),PQ∥BC;
(2)當(dāng)時(shí),求的值;
(3)△APQ能否與△CQB相似?若能,求出時(shí)間x的值;若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上A,B兩點(diǎn)對應(yīng)的有理數(shù)分別是,15,兩只電子螞蟻甲,乙分別從A,B兩點(diǎn)同時(shí)出發(fā)相向而行,甲的速度是3個(gè)單位/秒,乙的速度是6個(gè)單位/秒
(1)當(dāng)乙到達(dá)A處時(shí),求甲所在位置對應(yīng)的數(shù);
(2)當(dāng)電子螞蟻運(yùn)行秒后,甲,乙所在位置對應(yīng)的數(shù)分別是多少?(用含的式子表示)
(3)當(dāng)電子螞蟻運(yùn)行()秒后,甲,乙相距多少個(gè)單位?(用含的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,射線OM上有三點(diǎn)A、B、C,OC=45cm, BC=15cm, AB=30cm,已知動點(diǎn)P、Q同時(shí)運(yùn)動,其中動點(diǎn)P從點(diǎn)O出發(fā)沿OM方向以速度2cm/s勻速運(yùn)動,動點(diǎn)Q從點(diǎn)C出發(fā)沿CA方向勻速運(yùn)動,當(dāng)點(diǎn)Q運(yùn)動到點(diǎn)A時(shí),點(diǎn)Q停止運(yùn)動(點(diǎn)P繼續(xù)運(yùn)動).設(shè)運(yùn)動時(shí)間為t秒.
(1)求點(diǎn)P運(yùn)動到點(diǎn)B所用的時(shí)間;
(2)若點(diǎn)Q運(yùn)動速度為每秒1cm,經(jīng)過多少秒時(shí),點(diǎn)P和點(diǎn)Q的距離為30cm;
(3)當(dāng)PA=2PB時(shí),點(diǎn)Q恰好在線段AB的三等分點(diǎn)的位置,求點(diǎn)Q的速度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com