精英家教網 > 初中數學 > 題目詳情

【題目】已知△ABC,AB=AC,D為BC上一點,E為AC上一點,AD=AE.

(1)如果∠BAD=10°,∠DAE=30°,那么∠EDC=   °.

(2)如果∠ABC=60°,∠ADE=70°,那么∠BAD=   °,∠CDE=   °.

(3)設∠BAD=α,∠CDE=β猜想α,β之間的關系式,并說明理由.

【答案】(1)5(2)20,10(3)α=2β,理由見解析.

【解析】

1)先求出∠BAC=40°,再利用等腰三角形的性質求出∠B,∠ADE,根據三角形外角的性質求出∠ADC,減去∠ADE,即可得出結論;

2)先利用等腰三角形的性質求出∠DAE,進而求出∠BAD,即可得出結論;

3)利用等腰三角形的性質和三角形外角和定理即可得出結論.

1)∵∠BAD10°,∠DAE30°,

∴∠BAC=∠BAD+DAE40°,

ABAC,

∴∠B=∠C180°﹣∠BAC)=70°

ADAE,∠DAE30°

∴∠ADE=∠AED180°﹣∠DAE)=75°

∵∠B70°,∠BAD10°

∴∠ADC=∠B+BAD80°,

∴∠EDC=∠ADC﹣∠ADE

故答案為5;

2)∵ABAC,∠ABC60°,

∴∠BAC60°

ADAE,∠ADE70°,

∴∠DAE180°2ADE40°,

∴∠BAD60°40°20°,

∴∠ADC=∠BAD+ABD60°+20°80°,

∴∠CDE=∠ADC﹣∠ADE10°

故答案為:20,10;

3)猜想:α.理由如下:

設∠Bx,∠AEDy,

ABAC,ADAE

∴∠C=∠Bx,∠ADE=∠AEDy

∵∠AED=∠CDE+C,

yβ+x

∵∠ADC=∠BAD+B=∠ADE+CDE,

α+xy+ββ+x+β,

α

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】教室里的飲水機接通電源就進入自動程序,開機加熱時每分鐘上升10℃,加熱到100℃,停止加熱,水溫開始下降,此時水溫(℃)與開機后用時(min)成反比例關系.直至水溫降至30℃,飲水機關機.飲水機關機后即刻自動開機,重復上述自動程序.若在水溫為30℃時,接通電源后,水溫y(℃)和時間(min)的關系如圖,為了在上午第一節(jié)下課時(8:45)能喝到不超過50℃的水,則接通電源的時間可以是當天上午的( )

A.7:20
B.7:30
C.7:45
D.7:50

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】聯想三角形外心的概念,我們可引入如下概念。

定義:到三角形的兩個頂點距離相等的點,叫做此三角形的準外心。

舉例:如圖1,若PA=PB,則點P為△ABC的準外心。

應用:如圖2,CD為等邊三角形ABC的高,準外心P在高CD上,且PD=AB,求∠APB的度數。

探究:已知△ABC為直角三角形,斜邊BC=5,AB=3,準外心P在AC邊上,試探究PA的長。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在如圖所示的直角坐標系中,△ABC的頂點坐標分別是A(4,-1),B(1,1)C(1,4);點是△ABC內一點,當點平移到點時.

①請寫出平移后新三個頂點的坐標;

②求的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點MAB的中點,點PMB上.分別以AP,PB為邊,作正方形APCD和正方形PBEF,連結MDME.設AP=a,BP=b,且a+b=10,ab=20.則圖中陰影部分的面積為________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AC=BC,∠C=90°,AD是∠BAC的平分線,DEAB,垂足為E.

(1)若CD=6,求AC的長;

(2)求證:AB-AC=CD.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知ABCD的對角線AC,BD相交于點OEF經過點O,分別交AD,BC于點EF,且OE4AB5,BC9,則四邊形ABFE的周長是( )

A. 13 B. 16 C. 22 D. 18

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲、乙、丙、丁一起研究一道數學題,如圖,已知 EFAB,CDAB,甲說:“如果還知道∠CDG=BFE,則能得到∠AGD=ACB.”乙說:“如果還知道∠AGD=ACB,則能得到∠CDG=BFE.”丙說:“∠AGD 一定大于∠BFE.”丁說:“如果連接 GF,則 GFAB.”他們四人中,正確的是( 。

A.0 B.1 C.2 D.3

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在四邊形ABCD中,∠DAB被對角線AC平分,且AC2=ABAD,我們稱該四邊形為“可分四邊形”,∠DAB稱為“可分角”.

(1)如圖2,若四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,且∠DCB=∠DAB,則∠DAB=°.

(2)如圖3,在四邊形ABCD中,∠DAB=60°,AC平分∠DAB,且∠BCD=150°,求證:四邊形ABCD為“可分四邊形”;

(3)現有四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,且AC=4,BC=2,∠D=90°,求AD的長?

查看答案和解析>>

同步練習冊答案