【題目】聯(lián)想三角形外心的概念,我們可引入如下概念。
定義:到三角形的兩個頂點距離相等的點,叫做此三角形的準外心。
舉例:如圖1,若PA=PB,則點P為△ABC的準外心。
應用:如圖2,CD為等邊三角形ABC的高,準外心P在高CD上,且PD=AB,求∠APB的度數(shù)。
探究:已知△ABC為直角三角形,斜邊BC=5,AB=3,準外心P在AC邊上,試探究PA的長。
【答案】∠APB=90°,PA=2或
【解析】解:應用:①若PB=PC,連接PB,
則∠PCB=∠PBC,
∵CD為等邊三角形的高,∴AD=BD,∠PCB=30°。
∴∠PBD=∠PBC=30°,∴PD=DB=AB。
與已知PD=AB矛盾,∴PB≠PC。
②若PA=PC,連接PA,同理可得PA≠PC。
③若PA=PB,由PD=AB,得PD=AD =BD,∴∠APD=∠BPD=45°。∴∠APB=90°。
探究:∵BC=5,AB=3,∴AC=。
①若PB=PC,設PA=,則,∴,即PA=。
②若PA=PC,則PA=2。
③若PA=PB,由圖知,
在Rt△PAB中,不可能。
∴PA=2或。
應用:連接PA、PB,根據(jù)準外心的定義,分①PB=PC,②PA=PC,③PA=PB三種情況利用等邊三角形的性質求出PD與AB的關系,然后判斷出只有情況③是合適的,再根據(jù)等腰直角三角形的性質求出∠APB=45°,然后即可求出∠APB的度數(shù)。
探究:先根據(jù)勾股定理求出AC的長度,根據(jù)準外心的定義,分①PB=PC,②PA=PC,③PA=PB三種情況,根據(jù)三角形的性質計算即可得解
科目:初中數(shù)學 來源: 題型:
【題目】以下敘述正確的有( )
①對頂角相等;②同位角相等;③兩直角相等;④鄰補角相等;⑤多邊形的外角和都相等;⑥三角形的中線把原三角形分成面積相等的兩個三角形
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某同學在,兩家超市發(fā)現(xiàn)他看中的隨身聽的單價相同,書包單價也相同,隨身聽和書包單價之和是元,且隨身聽的單價比書包的單價的倍少元.
(1)求該同學看中的隨身聽和書包的單價各是多少元?
(2)某一天該同學上街,恰好趕上商家促銷,超市所有商品打八五折銷售,超市全場購物每滿元返購物券元銷售(不足元不返券,購物券全場通用),但他只帶了元錢,如果他只在一家超市購買看中的這兩樣商品,你能說明他可以選擇哪一家購買嗎?若兩家都可以選擇,在哪一家購買更省錢?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD是△ABC的角平分線,DE⊥AB,DF⊥AC,垂足分別為E,F.則下列結論:①AD上任意一點到點C,B的距離相等;②AD上任意一點到邊AB,AC的距離相等;③BD=CD,AD⊥BC;④∠BDE=∠CDF.其中正確的個數(shù)為( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠DAC+∠ACB=180°,EF//BC,CE平分∠BCF,∠DAC=3∠BCF,∠ACF=20°,則∠FEC的度數(shù)是( )
A.10°B.20°C.15°D.30°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:AD⊥BC于D,EG⊥BC于G,∠E=∠1,求證:AD平分∠ABC.下面是部分推理過程,請你將其補充完整:
∵AD⊥BC于D,EG⊥BC(已知)
∴∠ADC=∠EGC=90°( )
∴EG∥AD( )
∴∠E=________( )、
∠1=__________( )
又∵∠E=∠1(已知)
∴∠2=∠3( )
∴AD平分∠BAC。 )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC,AB=AC,D為BC上一點,E為AC上一點,AD=AE.
(1)如果∠BAD=10°,∠DAE=30°,那么∠EDC= °.
(2)如果∠ABC=60°,∠ADE=70°,那么∠BAD= °,∠CDE= °.
(3)設∠BAD=α,∠CDE=β猜想α,β之間的關系式,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P為△ABC的內心,延長AP交△ABC的外接圓于D,在AC延長線上有一點E,滿足AD2=ABAE.
求證:DE是⊙O的切線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com