【題目】計算: +2sin60°+|3﹣ |﹣( ﹣π)0 .
【答案】解: +2sin60°+|3﹣ |﹣( ﹣π)0
=3+2× +3﹣ ﹣1
=3+ +3﹣ ﹣1
=5
【解析】本題涉及二次根式化簡、特殊角的三角函數(shù)值、絕對值、負(fù)整數(shù)指數(shù)冪4個考點(diǎn).在計算時,需要針對每個考點(diǎn)分別進(jìn)行計算,然后根據(jù)實(shí)數(shù)的運(yùn)算法則求得計算結(jié)果.本題主要考查了實(shí)數(shù)的綜合運(yùn)算能力,是各地中考題中常見的計算題型.解決此類題目的關(guān)鍵是熟練掌握二次根式化簡、特殊角的三角函數(shù)值、絕對值、負(fù)整數(shù)指數(shù)冪等考點(diǎn)的運(yùn)算.
【考點(diǎn)精析】本題主要考查了零指數(shù)冪法則和特殊角的三角函數(shù)值的相關(guān)知識點(diǎn),需要掌握零次冪和負(fù)整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));分母口訣:30度、45度、60度的正弦值、余弦值的分母都是2,30度、45度、60度的正切值、余切值的分母都是3,分子口訣:“123,321,三九二十七”才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:E是∠AOB的平分線上一點(diǎn),EC⊥OB,ED⊥OA,C、D是垂足,連接CD,且交OE于點(diǎn)F.
(1)求證:OE是CD的垂直平分線.
(2)若∠AOB=60,請你探究OE,EF之間有什么數(shù)量關(guān)系?并證明你的結(jié)論。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從分別標(biāo)有數(shù)﹣3,﹣2,﹣1,0,1,2,3的七張沒有明顯差別的卡片中,隨機(jī)抽取一張,所抽卡片上的數(shù)的絕對值不小于2的概率是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)2014年投入教育經(jīng)費(fèi)2900萬元,2016年投入教育經(jīng)費(fèi)3509萬元.
(1)求2014年至2016年該地區(qū)投入教育經(jīng)費(fèi)的年平均增長率;
(2)按照義務(wù)教育法規(guī)定,教育經(jīng)費(fèi)的投入不低于國民生產(chǎn)總值的百分之四,結(jié)合該地區(qū)國民生產(chǎn)總值的增長情況,該地區(qū)到2018年需投入教育經(jīng)費(fèi)4250萬元,如果按(1)中教育經(jīng)費(fèi)投入的增長率,到2018年該地區(qū)投入的教育經(jīng)費(fèi)是否能達(dá)到4250萬元?請說明理由.
(參考數(shù)據(jù): =1.1, =1.2, =1.3, =1.4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上,張老師舉了下面的例題:
例1 等腰三角形中,,求的度數(shù).(答案:)
例2 等腰三角形中,,求的度數(shù).(答案:或或)
張老師啟發(fā)同學(xué)們進(jìn)行變式,小敏編了如下一題:
變式 等腰三角形中,,求的度數(shù).
(1)請你解答以上的變式題.
(2)解(1)后,小敏發(fā)現(xiàn),的度數(shù)不同,得到的度數(shù)的個數(shù)也可能不同.如果在等腰三角形中,設(shè),當(dāng)有三個不同的度數(shù)時,請你探索的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC的一邊AB上有一點(diǎn)P.
(1)能否在另外兩邊AC和BC上各找一點(diǎn)M、N,使得△PMN的周長最短.若能,請畫出點(diǎn)M、N的位置,若不能,請說明理由;
(2)若∠ACB=40°,在(1)的條件下,求出∠MPN的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB為⊙O的直徑,AC為⊙O的切線,OC交⊙O于點(diǎn)D,BD的延長線交AC于點(diǎn)E.
(1)求證:∠1=∠CAD;
(2)若AE=EC=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】荔枝是深圳的特色水果,小明的媽媽先購買了2千克桂味和3千克糯米糍,共花費(fèi)90元;后又購買了1千克桂味和2千克糯米糍,共花費(fèi)55元.(每次兩種荔枝的售價都不變)
(1)求桂味和糯米糍的售價分別是每千克多少元;
(2)如果還需購買兩種荔枝共12千克,要求糯米糍的數(shù)量不少于桂味數(shù)量的2倍,請設(shè)計一種購買方案,使所需總費(fèi)用最低.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①,已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m, CE⊥直線m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.
(2)如圖②,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com