如圖,在梯形ABCD中,AD∥BC,∠C=∠D=90°,AB=1,∠ABC是銳角.點(diǎn)E在CD上,且AE⊥EB,設(shè)∠ABE=x,∠EBC=y.則sin(x+y)=    .(用x、y的三角函數(shù)表示)
【答案】分析:過點(diǎn)A作AH⊥BC交BC于H,則可求出sin(x+y)=DC,由已知條件再依次表示出sinx,cosx,siny,cosy.因?yàn)椤螦EB=90°,∠C=∠D=90°所以可判定△ADE∽△EBC,有相似的性質(zhì)可得∴,結(jié)合以求出的條件可得問題答案.
解答:解:過點(diǎn)A作AH⊥BC交BC于H,
∵∠C=∠D=90°,
∴四邊形AHCD是矩形,
∴AH=DC.
在Rt△AHB中,sin∠ABH=,AB=1,
∴sin(x+y)=AH=DC.
在Rt△EBC中,siny=,cosy=,
∵AE⊥EB,
∴∠AEB=90°.
∴∠AED+∠BEC=90°.
∵∠DAE+∠AED=90°,
∴∠DAE=∠BEC.
∴△ADE∽△EBC.

∴AE•BC=DE•BE.
∵在Rt△AEB中,sinx==AE,cosx==BE.
∴sinxcosy==
∴cosx•siny=BE•=CE.
∴sinxcosy+cosx•siny=+CE.
=+CE.
=DE+CE=DC.
∴sin(x+y)=sinxcosy+cosx•siny.
故答案為:sinxcosy+cosx•siny.
點(diǎn)評(píng):本題考查了相似三角形的性質(zhì)和判定以及銳角三角函數(shù)的定義,解決此類題目的關(guān)鍵是作高線構(gòu)造直角三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

11、如圖,在梯形ABCD中,AB∥CD,對(duì)角線AC、BD交于點(diǎn)O,則S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,AB⊥AD,對(duì)角線BD⊥DC.
(1)求證:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,則梯形面積S梯形ABCD=
38.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD為直徑的半圓O切AB于點(diǎn)E,這個(gè)梯形的面積為21cm2,周長為20cm,那么半圓O的半徑為( 。
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步練習(xí)冊(cè)答案