【題目】(1)如圖1,一個正方體紙盒的棱長為6厘米,則它的表面積為 平方厘米.
(2)將該正方體的一些棱剪開展成一個平面圖形,則需要剪卉 條棱,并求這個平面圖形的周長.
(3)如圖2,一個長方體紙盒的長、寬、高分別是a厘米、b厘米、c厘米(a>b>c)將它的一些棱剪開展成一個平面圖形,求這個平面圖形的最大周長,畫出周長最大的平面圖形.
【答案】(1)216;(2)7;(3)8a+4b+2c.
【解析】
(1)根據(jù)正方體表面積公式即可求解;
(2)①根據(jù)正方體的棱的條數(shù)以及展開后平面之間應(yīng)有棱連著,可得出正方體表面展開要剪開的棱的條數(shù);剪開1條棱,增加兩個正方形的邊長,依此即可求解.
②根據(jù)邊長最長的都剪,邊長最短的減的最少,可得答案
解:(1)正方體的表面積=6×62=216cm2.
故答案為216.
(2)∵正方體有6個表面,12條棱,要展成一個平面圖形必須5條棱連接,
∴要剪12﹣5=7條棱,
4×(7×2)
=4×14
=56(cm).
∴這個平面圖形的周長是56cm;
故答案為7.
(3)如圖:
,
這個平面圖形的最大周長是8a+4b+2c.
科目:初中數(shù)學 來源: 題型:
【題目】一個正五邊形與一個正方形的邊長正好相等,在它們相接的地方,形成一個完整的“蘋果”圖案(如圖).如果讓正方形沿著正五邊形的四周滾動,并且始終保持正方形和正五邊形有兩條邊鄰接,那么第一次恢復“蘋果”的圖形時,正方形要繞五邊形轉(zhuǎn)( )圈.
A. 4 B. 3 C. 6 D. 8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了改善教室空氣環(huán)境,某校九年級1班班委會計劃到朝陽花卉基地購買綠植.已知該基地一盆綠蘿與一盆吊蘭的價格之和是12元.班委會決定用60元購買綠蘿,用90元購買吊蘭,所購綠蘿數(shù)量正好是吊蘭數(shù)量的兩倍.
(1)分別求出每盆綠蘿和每盆吊蘭的價格;
(2)該校九年級所有班級準備一起到該基地購買綠蘿和吊蘭共計90盆,其中綠蘿數(shù)量不超過吊蘭數(shù)量的一半,該基地特地對吊蘭價格給出了如下的優(yōu)惠政策,一次性購買的吊蘭超過20盆時,超過部分的吊蘭每盆的價格打8折,根據(jù)該基地的優(yōu)惠信息,九年級購買這兩種綠植各多少盆時總費用最少?最少費用是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于平面直角坐標系中的任意兩點P1(x1,y1),P2(x2,y2),我們把叫做P1、P2兩點間的直角距離,記作d(P1,P2).
(1)已知O為坐標原點,動點P(x,y)滿足d(O,P)=1,請寫出x與y之間滿足的關(guān)系式,并在所給的直角坐標系中畫出所有符合條件的點P所組成的圖形;
(2)設(shè)P0(x0,y0)是一定點,Q(x,y)是直線y=ax+b上的動點,我們把d(P0,Q)的最小值叫做P0到直線y=ax+b的直角距離.試求點M(2,1)到直線y=x+2的直角距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小張準備購買一套新房,他準備將地面鋪上地磚,地面結(jié)構(gòu)如圖所示,根據(jù)圖中的數(shù)據(jù)(單位:m),解答下列問題:
(1)寫出用含x、y的代數(shù)式表示的地面總面積;
(2)若x=5,y=1.5,鋪設(shè)1m2地磚的平均費用為180元,則鋪地磚的總費用為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC在平面直角坐標系中的位置如圖所示,
(1)寫出△ABC三個頂點的坐標;
(2)求出△ABC的面積;
(3)在圖中畫出把△ABC先向左平移5個單位,再向上平移2個單位后所得的△A′B′C′,并寫出各頂點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個正方體禮盒如圖所示,六個面分別寫有“祝”“福”“祖”“國”“萬”“歲”,其中“祝”的對面是“祖”,“萬”的對面是“歲”,則它的表面展開圖可能是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將一張正三角形紙片剪成四個小正三角形,得到4個小正三角形,稱為第一次操作;然后,將其中的一個正三角形再剪成四個小正三角形,共得到7個小正三角形,稱為第二次操作;再將其中的一個正三角形再剪成四個小正三角形,共得到10個小正三角形,稱為第三次操作;…,根據(jù)以上操作,若要得到2014個小正三角形,則需要操作的次數(shù)是( 。┐危
A.669B.670C.671D.672
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△AEB和Rt△AFC中,∠E=∠F=90°,BE=CF.BE與AC相交于點M,與CF相交于點D,AB與CF相交于點N,∠EAC=∠FAB.有下列結(jié)論:①∠B=∠C;②CD=DN;③CM=BN;④△ACN≌△ABM.其中正確結(jié)論的序號是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com