如圖,若將邊長(zhǎng)為3和2的兩小正方形紙板剪拼成一個(gè)大正方形,則該大正方形的邊長(zhǎng)為
13
13
分析:利用邊長(zhǎng)為3和2的兩小正方形紙板剪拼成一個(gè)大正方形,得出正方形的面積,進(jìn)而得出正方形邊長(zhǎng)即可.
解答:解:如圖所示:
∵邊長(zhǎng)為3和2的兩小正方形紙板剪拼成一個(gè)大正方形,
∴大正方形的面積為:32+22=13,
∴該大正方形的邊長(zhǎng)為:
13

故答案為:
13
點(diǎn)評(píng):此題主要考查了正方形的性質(zhì)以及正方形面積求法,利用正方形邊長(zhǎng)與面積關(guān)系得出是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△OAB是邊長(zhǎng)為2+
3
的等邊三角形,其中O是坐標(biāo)原點(diǎn),頂點(diǎn)B在y軸正方向上,將△OAB折疊,使點(diǎn)A落在邊OB上,記為A′,折痕為EF.
(1)當(dāng)A′E∥x軸時(shí),求點(diǎn)A′和E的坐標(biāo);
(2)當(dāng)A′E∥x軸,且拋物線y=-
1
6
x2+bx+c經(jīng)過點(diǎn)A′和E時(shí),求拋物線與x軸的交點(diǎn)的坐標(biāo);
(3)當(dāng)點(diǎn)A′在OB上運(yùn)動(dòng),但不與點(diǎn)O、B重合時(shí),能否使△A′EF成為直角三角形?精英家教網(wǎng)若能,請(qǐng)求出此時(shí)點(diǎn)A′的坐標(biāo);若不能,請(qǐng)你說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某人要做一批地磚,每塊地磚(如圖1)是邊長(zhǎng)為0.4米的正方形ABCD,點(diǎn)E、F分別在邊精英家教網(wǎng)BC和CD上,若將此種地磚按圖2所示的形式鋪設(shè),能使中間的深色陰影部分成四邊形EFGH.
(1)直接判定四邊形EFGH的形狀;
(2)設(shè)CE=x米.
①用x的代數(shù)式表示四邊形AEFD的面積;
②若△CFE、△ABE和四邊形AEFD均由單一材料制成,制成△CFE、△ABE和四邊形AEFD的三種材料的每平方米價(jià)格依次為120元、80元、40元.試問x取何值時(shí),這批地磚的材料費(fèi)最省?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△OAB是邊長(zhǎng)為2+
3
的等邊三角形,其中O是坐標(biāo)原點(diǎn),頂點(diǎn)B在y軸的正方向上,將△OAB折疊,使點(diǎn)A落在OB邊上,記為A′,折痕為EF.
(1)當(dāng)A′E∥x軸時(shí),求點(diǎn)A'的坐標(biāo)和直線A′F所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)在OB上是否存在點(diǎn)A′,使四邊形AFA′E是菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)A′的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)當(dāng)點(diǎn)A′在OB上運(yùn)動(dòng)但不與點(diǎn)O、B重合,能否使△A′EF成為直角三角形?若能,請(qǐng)求出此時(shí)點(diǎn)A′的坐標(biāo);若不能,請(qǐng)你說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,若將邊長(zhǎng)為3和2的兩小正方形紙板剪拼成一個(gè)大正方形,則該大正方形的邊長(zhǎng)為______.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案