【題目】如圖,△ABC中,∠A=30°,∠ACB=90°,BC=2,D是AB上的動點,將線段CD繞點C逆時針旋轉(zhuǎn)90°,得到線段CE,連接BE,則BE的最小值是( )
A.-1B.C.D.2
【答案】A
【解析】
過點C作CK⊥AB于點K,將線段CK繞點C逆時針旋轉(zhuǎn)90° 得到CH,連接HE,延長HE交AB的延長線于點J;通過證明△CKD≌△CHE (ASA),進而證明所構(gòu)建的四邊形CKJH是正方形,所以當點E與點J重合時,BE的值最小,再通過在Rt△CBK中已知的邊角條件,即可求出答案.
如圖,過點C作CK⊥AB于點K,將線段CK繞點C逆時針旋轉(zhuǎn)90° 得到CH,連接HE,延長HE交AB的延長線于點J;
∵將線段CD繞點C逆時針旋轉(zhuǎn)90° ,得到線段CE
∴∠DCE=∠KCH = 90°
∵∠ECH=∠KCH - ∠KCE,∠DCK =∠DCE-∠KCE
∴∠ECH =∠DCK
又∵CD= CE,CK = CH
∴在△CKD和△CHE中
∴△CKD≌△CHE (ASA)
∴∠CKD=∠H=90°,CH=CK
∴∠CKJ =∠KCH =∠H=90°
∴四邊形CKJH是正方形
∴CH=HJ=KJ=C'K
∴點E在直線HJ上運動,當點E與點J重合時,BE的值最小
∵∠A= 30°
∴∠ABC=60°
在Rt△CBK中, BC= 2,
∴CK = BCsin60°=,BK=BCcos60° = 1
∴KJ = CK =
所以BJ = KJ-BK=;
BE的最小值為.
故選A.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形紙片的邊長為5,E是邊的中點,連接.沿折疊該紙片,使點B落在F點.則的長為______________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形ABCD的頂點A點,D點分別在x軸、y軸上,對角線BD∥x軸,反比例函數(shù)的圖象經(jīng)過矩形對角線的交點E,若點A(2,0),D(0,4),則k的值為( )
A.16B.20C.32D.40
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,OABC的周長為7,∠AOC=60°,以O為原點,OC所在直線為x軸建立直角坐標系,函數(shù)(x>0)的圖像經(jīng)過OABC的頂點A和BC的中點M,則k的值為( )
A.B.12C.D.6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將含30°角的直角三角板ABC(∠A=30°)繞其直角頂點C順時針旋轉(zhuǎn)α角(0°<α<90°),得到Rt△A′B′C,A′C與AB交于點D,過點D作DE∥A′B′交CB′于點E,連接BE.易知,在旋轉(zhuǎn)過程中,△BDE為直角三角形.設(shè)BC=1,AD=x,△BDE的面積為S.
(1)當α=30°時,求x的值.
(2)求S與x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)以點E為圓心,BE為半徑作⊙E,當S=時,判斷⊙E與A′C的位置關(guān)系,并求相應(yīng)的tanα值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校開展了“創(chuàng)建文明校園”活動周,活動周設(shè)置了“A:文明禮儀,B:生態(tài)環(huán)境,C:交通安全,D:衛(wèi)生保潔”四個主題,每個學生選一個主題參與.為了解活動開展情況,學校隨機抽取了部分學生進行調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下條形統(tǒng)計圖和扇形統(tǒng)計圖.
(1)本次隨機調(diào)查的學生人數(shù)是 人;
(2)請你補全條形統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中,“A”所在扇形的圓心角等于 度;
(4)小明和小華各自隨機參加其中的一個主題活動,請用畫樹狀圖或列表的方式,求他們恰好同時選中“文明禮儀”或“生態(tài)環(huán)境”主題的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列各式規(guī)律:① 52-22=3×7;②72-42=3×11;③ 92-62=3×11;…;根據(jù)上面等式的規(guī)律:
(1)寫出第6個和第n個等式;
(2)證明你寫的第n個等式的正確性.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知圓錐的高為,母線為,且,圓錐的側(cè)面展開圖為如圖所示的扇形.將扇形沿折疊,使點恰好落在上的點,則弧長與圓錐的底面周長的比值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題背景:
(1)如圖1,在△ABC和△CDE中,AB=AC,EC=ED,∠BAC=∠CED,請在圖中作出與△BCD相似的三角形.
遷移應(yīng)用:
(2)如圖2,E為正方形ABCD內(nèi)一點,∠DEB=135°,在DE上取一點G,使得BE=EG,延長BE交AG于點F,求AF:FG的值.
聯(lián)系拓展:
(3)矩形ABCD中,AB=6,AD=8,P、E分別是AC、BC上的點,且四邊形PEFD為矩形,若△PCD是等腰三角形時,直接寫出CF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com