【題目】如圖1,在平面直角坐標(biāo)系中,,的垂直平分線(xiàn)交軸與點(diǎn),連接為第一象限內(nèi)的點(diǎn).

1)求點(diǎn)坐標(biāo);

2)當(dāng)時(shí),求的值;

3)如圖2,點(diǎn)軸上的一個(gè)動(dòng)點(diǎn),當(dāng)為等腰三角形時(shí),直接寫(xiě)出點(diǎn)的坐標(biāo).

【答案】1;(2)a=6;(3)

【解析】

1)設(shè)OD=x,則AD=8-x,由線(xiàn)段垂直平分線(xiàn)的性質(zhì)得BD=AD=8-x,在RtBOD中,由勾股定理得出方程,解方程即可得出D點(diǎn)坐標(biāo);

2)設(shè)直線(xiàn)BD的解析式為y=kx+b,由待定系數(shù)法即可得出解析式,由題意得出DBCDBM是同底等高的三角形,得出BD與直線(xiàn)CM平行,求出直線(xiàn)CM的解析式為 ;把M(a,1)代入,求出a=6即可;

3)由勾股定理求出AB,得出 ,由勾股定理求出 ,分三種情況:①EC=ED時(shí),②DC=DE時(shí);③CE=CD時(shí);分別求出點(diǎn)E的坐標(biāo)即可.

解:(1)∵B(4,0),A(08)

OA=8,OB=4

設(shè)OD=x,則AD=8-x

AB的垂直平分線(xiàn)交與y軸于點(diǎn)D

BD=AD=8-x

RtBOD中,由勾股定理得:

x=3

D(0,3)

(2)設(shè)直線(xiàn)BD的解析式為y=kx+b,

B(4,0)D(0,3)代入y=kx+b得:

則直線(xiàn)BD的解析式為

時(shí),

∴△DBCDBM同是底為BD,且高相等的三角形

∴直線(xiàn)BD與直線(xiàn)CM平行

設(shè)CM的解析式為

CDAB的垂直平分線(xiàn)

CAB的中點(diǎn)

B(4,0)A(0,8),

C(2,4)

C(24)代入得:,

解得:

∴直線(xiàn)CM的解析式為

又因?yàn)?/span>M(a1)且在第一象限

解得:a=6

3)由勾股定理得,

∵點(diǎn)C為邊AB的中點(diǎn)

AD=OA-OD=5

設(shè)E(0,x),則

分三種情況:①EC=ED時(shí), 過(guò)EEQCDQ,如圖所示:

EQAB

QCD的中點(diǎn)

EAD的中點(diǎn)

AE=ED

8-x=x-3

解得:

DC=DE時(shí)

CE=CD時(shí),過(guò)CCFAO交于F,如圖所示:

∴∠AFC=AOB=90°FED中點(diǎn)

FC//OB,EF=DF

CAB的中點(diǎn)

FAO的中點(diǎn),

A(08)O(0,0)

F(04)

EF=DF=1

x-4=1

x=5

E(0,5)

綜上所述:當(dāng)CDE為等腰三角形時(shí),E點(diǎn)的坐標(biāo)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC 中,點(diǎn) D 是邊 BC 上的點(diǎn)(與 B、C 兩點(diǎn)不重合,過(guò)點(diǎn) D DEAC,DFAB,分別交 AB、AC E、F 兩點(diǎn),下列說(shuō)法正確的是(

A. AD 平分BAC,則四邊形 AEDF 是菱形

B. BDCD,則四邊形 AEDF 是菱形

C. AD 垂直平分 BC,則四邊形 AEDF 是矩形

D. ADBC則四邊形 AEDF 是矩形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,鐵路上A,B兩點(diǎn)相距25 km,C,D為兩村莊,DAAB于點(diǎn)A,CBAB于點(diǎn)B,已知DA15 km,CB10 km,現(xiàn)在要在鐵路AB上建一個(gè)土特產(chǎn)品收購(gòu)站E,使得C,D兩村到E站的距離相等,則E站應(yīng)建在離A站多少km處?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2016山東省濟(jì)寧市)如圖,O為坐標(biāo)原點(diǎn),四邊形OACB是菱形,OBx軸的正半軸上,sinAOB=,反比例函數(shù)在第一象限內(nèi)的圖象經(jīng)過(guò)點(diǎn)A,與BC交于點(diǎn)F,則AOF的面積等于( 。

A. 60B. 80C. 30D. 40

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知反比例函數(shù)m是常數(shù),m≠0),一次函數(shù)yaxba、b為常數(shù),a≠0),其中一次函數(shù)與x軸,y軸的交點(diǎn)分別是A(-4,0),B0,2).

1)求一次函數(shù)的關(guān)系式;

2)反比例函數(shù)圖象上有一點(diǎn)P滿(mǎn)足:①PA⊥x軸;②POO為坐標(biāo)原點(diǎn)),求反比例函數(shù)的關(guān)系式;

3)求點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)Q的坐標(biāo),判斷點(diǎn)Q是否在該反比例函數(shù)的圖象上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB表示路燈,CD、C′D′表示小明所在兩個(gè)不同位置:

(1)分別畫(huà)出這兩個(gè)不同位置小明的影子;

(2)小明發(fā)現(xiàn)在這兩個(gè)不同的位置上,他的影子長(zhǎng)分別是自己身高的1倍和2倍,他又量得自己的身高為1.5米,DD′長(zhǎng)為3米,你能幫他算出路燈的高度嗎?(B、D、D′在一條直線(xiàn)上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC中,AB=AC,點(diǎn)PAB上一動(dòng)點(diǎn),點(diǎn)QAC的延長(zhǎng)線(xiàn)上一動(dòng)點(diǎn),且點(diǎn)PB運(yùn)動(dòng)向A、點(diǎn)QC運(yùn)動(dòng)向Q移動(dòng)的時(shí)間和速度相同,PQBC相交于點(diǎn)D,若AB=BC=16

1)如圖1,當(dāng)點(diǎn)PAB的中點(diǎn)時(shí),求CD的長(zhǎng);

2)如圖②,過(guò)點(diǎn)P作直線(xiàn)BC的垂線(xiàn),垂足為E,當(dāng)點(diǎn)P、Q在移動(dòng)的過(guò)程中,設(shè)BE+CD=λ,λ是否為常數(shù)?若是請(qǐng)求出λ的值,若不是請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩人在一環(huán)形場(chǎng)地上鍛煉,甲騎自行車(chē),乙跑步,甲比乙每分鐘快200m,兩人同時(shí)從起點(diǎn)同向出發(fā),經(jīng)過(guò)3min兩人首次相遇,此時(shí)乙還需跑150m才能跑完第一圈.

求甲、乙兩人的速度分別是每分鐘多少米?列方程或者方程組解答

若兩人相遇后,甲立即以每分鐘300m的速度掉頭向反方向騎車(chē),乙仍按原方向繼續(xù)跑,要想不超過(guò)兩人再次相遇,則乙的速度至少要提高每分鐘多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,中線(xiàn)BE、CF相交于點(diǎn)G,連接EF,下列結(jié)論:

=; =; =; =.其中正確的個(gè)數(shù)有(

A. 1個(gè) B. C. 3個(gè) D. 4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案